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Before The Show

● I talk quickly
● Stop me if you don't understand

– Also stop me if you need examples

– Questions or disagreements at end

● Points will be fast, but still important
– More detail on everything at my blog: 

http://www.codesimplicity.com/

● Some of these things you may already know, 
what matters is pointing them out as important.

http://www.codesimplicity.com/


  

● Who am I?
– Assistant Project Lead for Bugzilla

– Writer of Code Simplicity

– Long-time programmer and system administrator

● Data comes from:
– Experience programming and designing

● Bugzilla “experiment”

– Interviewing many programmers

– Reading extensively with analysis
● Data collection is difficult because of the timeframe of 

software projects.

● I speak very definitely, but please make up your 
own mind about the things I am saying.



  

What Is Software Design?

● Administrative Decisions
– What programmer to put where

– Development timeframes

– etc.

● Coding
● Technical Decisions

– What language to use

– What technologies to choose

– etc.



  

There Is No Science of Software 
Design

● Science requires:
– Laws

– Proof

– Results

● Many methodologies, no science:
– “Waterfall”

– “Agile”

– etc.



  

● Not going to prove anything today, just show
– Can prove, though, in various ways

● There are similar ideas out there, but they are 
not the same as what I am going to talk about
– Largely they are not low-level enough

● Seven Principles: 
http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment

– They tell you what to do, I only help you make 
decisions for yourself and try to tell you why.

– I did not derive from any of these methodologies, 
but the bits of them that work could be derived from 
what I am going to tell you.

http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment


  

Why Have a Science of Software 
Design?

● Help Make Technical Decisions
● Why do some things “work” and others don't?



  

Results

● Bugzilla
● Improved My Own Programming

– Resolved every question

● Brought novices to understand why
● Explained difficulties and “war stories” of 

experienced programmers



  

Not Brainwashing or Marketing

● Not going to tell you what decisions to make, 
just going to give you information that will help 
you make them
– This differs from methodologies

● Buzzword-free



  

FOSS vs. Proprietary

● The basics are the same, but application can be 
different.



  

Purpose Of Software

● To help people
– Never “to help the computer”

– Specific software is “To help people (blah)”
● Stated purpose should be:

– Short

– Simple

– Specific

– Needed

– Followed Exactly



  

Goals of Software Design

● Be as helpful as possible
● Continue to be as helpful as possible
● Make decisions that make it easy to be (and 

continue being) as helpful as possible



  

Primary Law: Future

● There is more future than present
– Future is composed of infinite series of presents

● The future is more important than the present
● Effort spent on design should be proportional to 

how much future time there is in which you 
expect the software to exist
– Planning to re-write is unnecessary



  

Future: Known vs. Unknown

Known Unknown

Near 
Future

Far Future

Future 
Requirements

Consequences

Software has long time lines



  

Law Of Change

● The longer your software exists, the more 
probable it is that any piece of it will have to 
change
– Means that as time goes on, every piece is likely to 

change



  

Law of Defect Probability

● The chance of introducing a defect into your 
program is directly proportional to the size of 
the changes you make
– Perfection is impossible

● Write as little code as possible
● Don't fix what isn't broken
● Explains re-use



  

Law Of Simplicity

● The ease of maintenance of any piece of 
software is directly proportional to the simplicity 
of the individual pieces
– Not of the whole system, just the individual pieces

● Stated differently, is inverse to the complexity.
● Simplicity is relative, largely to viewpoint
● How simple do you have to be?

– Perspective of another programmer who's never 
seen your code

● Be consistent



  

What Is a Bug?

● Programmer's Intentions
– Uncertainties can be resolved by:

● Comments
● Spec
● “Reasonable programmer”
● Assume he/she meant to do what is best for the user

● User Expectations
– Specs that violate user expectations are spec bugs

– If there's a conflict, it's “majority rules”
● You can also add a preference, but that adds complexity



  

Where Do Bugs Come From?

● Complexity
– The box with a million unlabeled buttons

● Misunderstandings
– Particularly of language words, symbols, functions, 

etc.



  

“Law” of Testing

● You don't know it works unless you've tried it.



  

Application in FOSS

●Must be more hardcore
●Largely problems with geographic distribution
●Here's where I tell you some things to do, but you 
should still make up your own mind.



  

Difficulties of Design in FOSS

● Speed of change can be limited
– Reviews

– Checkin Procedures

– Lack of Somebody to Talk To (IRC helps)

● Time available can be limited
– Designer's Time

● Have to communicate designs quickly

– Implementer's Time
● Have to be able to read design quickly



  

● Communication bandwidth is limited
– Have to type to communicate design

– No whiteboard, etc.

– Group probably won't all be there at once

● Novices
– Either to development in general or just your 

project.

● Desire for consistency vs. desire for 
development speed

● Disconnection with users
● User requirements = My requirements?



  

● Developers pick what to work on
– May not want to conform to design

– May not want to work on refactoring

● Getting out releases for testing



  

Solutions

● Extreme consistency
– If you can't communicate a design, it helps if the 

existing code already works the right way

● Brief communications
● Code reviews
● Extensive developer documentation
● Lots of attention to newbies

– Be nice



  

● Read support mail
● Read blogs about your product

– But don't ever let your detractors write your 
requirements.

● Survey your users
● Have somebody who loves refactoring



  

The End: Q & A

http://www.codesimplicity.com/

max@codesimplicity.com

http://www.codesimplicity.com/
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