

Code Simplicity:
Software Design In Open Source

Projects

Max Kanat-Alexander
max@codesimplicity.com

Before The Show

● I talk quickly
● Stop me if you don't understand

– Also stop me if you need examples

– Questions or disagreements at end

● Points will be fast, but still important
– More detail on everything at my blog:

http://www.codesimplicity.com/

● Some of these things you may already know,
what matters is pointing them out as important.

http://www.codesimplicity.com/

● Who am I?
– Assistant Project Lead for Bugzilla

– Writer of Code Simplicity

– Long-time programmer and system administrator

● Data comes from:
– Experience programming and designing

● Bugzilla “experiment”

– Interviewing many programmers

– Reading extensively with analysis
● Data collection is difficult because of the timeframe of

software projects.

● I speak very definitely, but please make up your
own mind about the things I am saying.

What Is Software Design?

● Administrative Decisions
– What programmer to put where

– Development timeframes

– etc.

● Coding
● Technical Decisions

– What language to use

– What technologies to choose

– etc.

There Is No Science of Software
Design

● Science requires:
– Laws

– Proof

– Results

● Many methodologies, no science:
– “Waterfall”

– “Agile”

– etc.

● Not going to prove anything today, just show
– Can prove, though, in various ways

● There are similar ideas out there, but they are
not the same as what I am going to talk about
– Largely they are not low-level enough

● Seven Principles:
http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment

– They tell you what to do, I only help you make
decisions for yourself and try to tell you why.

– I did not derive from any of these methodologies,
but the bits of them that work could be derived from
what I am going to tell you.

http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment

Why Have a Science of Software
Design?

● Help Make Technical Decisions
● Why do some things “work” and others don't?

Results

● Bugzilla
● Improved My Own Programming

– Resolved every question

● Brought novices to understand why
● Explained difficulties and “war stories” of

experienced programmers

Not Brainwashing or Marketing

● Not going to tell you what decisions to make,
just going to give you information that will help
you make them
– This differs from methodologies

● Buzzword-free

FOSS vs. Proprietary

● The basics are the same, but application can be
different.

Purpose Of Software

● To help people
– Never “to help the computer”

– Specific software is “To help people (blah)”
● Stated purpose should be:

– Short

– Simple

– Specific

– Needed

– Followed Exactly

Goals of Software Design

● Be as helpful as possible
● Continue to be as helpful as possible
● Make decisions that make it easy to be (and

continue being) as helpful as possible

Primary Law: Future

● There is more future than present
– Future is composed of infinite series of presents

● The future is more important than the present
● Effort spent on design should be proportional to

how much future time there is in which you
expect the software to exist
– Planning to re-write is unnecessary

Future: Known vs. Unknown

Known Unknown

Near
Future

Far Future

Future
Requirements

Consequences

Software has long time lines

Law Of Change

● The longer your software exists, the more
probable it is that any piece of it will have to
change
– Means that as time goes on, every piece is likely to

change

Law of Defect Probability

● The chance of introducing a defect into your
program is directly proportional to the size of
the changes you make
– Perfection is impossible

● Write as little code as possible
● Don't fix what isn't broken
● Explains re-use

Law Of Simplicity

● The ease of maintenance of any piece of
software is directly proportional to the simplicity
of the individual pieces
– Not of the whole system, just the individual pieces

● Stated differently, is inverse to the complexity.
● Simplicity is relative, largely to viewpoint
● How simple do you have to be?

– Perspective of another programmer who's never
seen your code

● Be consistent

What Is a Bug?

● Programmer's Intentions
– Uncertainties can be resolved by:

● Comments
● Spec
● “Reasonable programmer”
● Assume he/she meant to do what is best for the user

● User Expectations
– Specs that violate user expectations are spec bugs

– If there's a conflict, it's “majority rules”
● You can also add a preference, but that adds complexity

Where Do Bugs Come From?

● Complexity
– The box with a million unlabeled buttons

● Misunderstandings
– Particularly of language words, symbols, functions,

etc.

“Law” of Testing

● You don't know it works unless you've tried it.

Application in FOSS

●Must be more hardcore
●Largely problems with geographic distribution
●Here's where I tell you some things to do, but you
should still make up your own mind.

Difficulties of Design in FOSS

● Speed of change can be limited
– Reviews

– Checkin Procedures

– Lack of Somebody to Talk To (IRC helps)

● Time available can be limited
– Designer's Time

● Have to communicate designs quickly

– Implementer's Time
● Have to be able to read design quickly

● Communication bandwidth is limited
– Have to type to communicate design

– No whiteboard, etc.

– Group probably won't all be there at once

● Novices
– Either to development in general or just your

project.

● Desire for consistency vs. desire for
development speed

● Disconnection with users
● User requirements = My requirements?

● Developers pick what to work on
– May not want to conform to design

– May not want to work on refactoring

● Getting out releases for testing

Solutions

● Extreme consistency
– If you can't communicate a design, it helps if the

existing code already works the right way

● Brief communications
● Code reviews
● Extensive developer documentation
● Lots of attention to newbies

– Be nice

● Read support mail
● Read blogs about your product

– But don't ever let your detractors write your
requirements.

● Survey your users
● Have somebody who loves refactoring

The End: Q & A

http://www.codesimplicity.com/

max@codesimplicity.com

http://www.codesimplicity.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

