
Table of Contents

Preface . v

1. Introduction . 1
Why Simplicity? 1
Software Design 2

2. The Purpose of Software . 5
Real-World Application 6

3. The Future . 9
The Equation of Software Design 9

Value 10
Effort 11
Maintenance 12
The Full Equation 13
Reducing the Equation 13
What You Do and Do Not Want 14

The Quality of Design 16
Unforeseeable Consequences 17

4. Change . 21
Change in a Real-World Program 21
The Three Flaws 24

Writing Code That Isn’t Needed 24
Not Making the Code Easy to Change 26
Being Too Generic 28

Incremental Development and Design 30

5. Defects and Design . 33
If It Ain’t Broken... 34
Don’t Repeat Yourself 35

iii

6. Simplicity . 37
Simplicity and the Equation of Software Design 39
Simplicity Is Relative 39
How Simple Do You Have to Be? 41
Be Consistent 43
Readability 44

Naming Things 45
Comments 46

Simplicity Requires Design 46

7. Complexity . 49
Complexity and Purpose 51
Bad Technologies 52

Survival Potential 53
Interoperability 53
Attention to Quality 54
Other Reasons 54

Complexity and the Wrong Solution 54
What Problem Are You Trying to Solve? 55

Complex Problems 55
Handling Complexity 56

Making One Piece Simpler 58
Unfixable Complexity 58

Rewriting 59

8. Testing . 61

A. The Laws of Software Design . 63

B. Facts, Laws, Rules, and Definitions . 65

iv | Table of Contents

Preface

Many years ago, I was given a unique opportunity. I started doing volunteer software
development for an open-source project called “Bugzilla” that had famously messy
code. It had reached what is usually considered the “point of no return” in software
development—due to the complexity of the system, it was so hard to modify that all
new feature work had slowed to a crawl. Most of the developers were throwing their
hands up in the air and walking away from the project in frustration. After all, they
were volunteers—they didn’t have to deal with bad code if they didn’t want to.

However, Bugzilla had been around for six years at that point, and it had millions of
users. It was one of the backbones of open-source development on the Web—nearly
every major open-source project was using it to keep track of the bugs they needed to
fix in their software. Some companies—like Mozilla, the makers of Firefox—were using
Bugzilla to keep track of every single task that every employee in the company was
doing. If Bugzilla died as a project, it would have been a severe blow to the world of
open-source development and in a smaller way, to the software industry as a whole.

So obviously, it had to survive. But how could we possibly do that? Normally at this
point in the software development lifecycle, organizations tend to re-write their soft-
ware. But due to developer attrition, we didn’t have the resources to re-write. We barely
had the resources to maintain the existing code!

So partially born out of necessity, but even more so out of an idealism that abhors
throwing away an entire system just to re-write an identical one, I took on a crusade to
fix up Bugzilla’s existing code instead of re-writing it. I and a small group of new de-
velopers on the project re-architected the existing system piece by piece and shipped
slightly improved new versions every few months. We were still writing new features
while we did this, but always in a way that made the code better, not messier.

And it worked. Boy did it work. After three years of fixing up the code this way, we
were pumping out features at twice the rate we used to with 1/4th the developers the
project used to have (before they all gave up on the old messy code). With an all-
volunteer part-time team, no budget at all, and no marketing whatsoever, we remained
one of the top products in our field against competitors with massive developer staffs
and multimillion-dollar revenue streams.

v

So how did we manage to do this? Well, for many years before I started working on the
Bugzilla Project, I had been developing the seeds of a software development philosophy
that wasn’t just a new method of managing developers, but instead consisted of a series
of universal laws—ideas that could be applied to every software project, in every lan-
guage, that would resolve any situation developers might find themselves in. The prob-
lem, I figured, was that there were too many opinions in the world of software and not
enough facts. If I could just figure out what the most universal and fundamental facts
about software development were, then a lot of other problems would be laid to rest.

The Bugzilla Project was my primary test bed for figuring out these facts, and once they
were determined, they made an unbelievable difference in the quality of the code and
the success of the product.

It’s not enough just to test out an idea on one product and call it a fact, though, no
matter how successful it may be. So once I had a good idea what these facts were, I
started brand-new personal projects to see the difference they would make there, and
they worked just as well. Then I started to interview programmers about the situations
at their organizations and the history of their software. I wanted to see if I could find
counter-examples to these facts, and I found none. Instead, I learned that I could predict
the end of nearly every software development story simply by hearing it halfway
through, using the facts I’d discovered.

All of this is still not enough, of course. I tried out the ideas on several other real-world
projects and found them equally true there as they were on Bugzilla. I presented my
ideas to thousands of developers to see if anybody could come up with a counter-
example from their experience, and nobody ever did. I looked up numerous experi-
ments that had been done with software development—not to see the conclusions,
which were often erroneous, but simply to see if the data that researchers had tracked
backed up these ideas, and it completely did. I studied the history of software devel-
opment and the trajectories of famous software projects to see if they matched these
ideas, and they did. There is, as far as I am aware, no piece of experience or data
anywhere in the history of software development that contradicts what I am about to
tell you in this book.

Now, of course, I’m not saying that what is in this book is perfect. I’m just saying that
it works. As far as I have been able to, I have proven that each of the ideas contained
herein will improve any software project that they are applied to. Now that the ideas
are formalized, I’d love to do some stronger science on them in better-crafted experi-
ments, but until then I think they are practical enough to deliver to you as they are. I
truly believe that they are the universal laws of software development, that they repre-
sent actual natural functionings of the universe in which we live, and that they have the
potential to help make every software project simpler, saner, and more successful.

The strangest thing about these ideas is that they’re incredibly simple. In fact, when
you read some of them, you may think that they are so simple as to be stupid. It’s not
that people haven’t known many of these ideas—it’s that they didn’t know they were

vi | Preface

laws. Once you start thinking with these ideas as the fundamental basis for all good
software development decisions, as unshakable truths from which all best practices are
derived, that’s when you start to realize their true value.

And even if you did know these ideas—maybe every single idea in this book—think
about it this way: what if all new programmers could learn all of these ideas without
having to go through all the hard experiences you had to have? There are so many new
programmers coming into the field right now that some companies are in a continuous
confusion of bad practices resulting from inexperience. What if new developers didn’t
need to have all those bad experiences just to learn the fundamentals of practical soft-
ware engineering? Well, I hope that is what this book represents—the opportunity for
all developers, both highly experienced and brand new, to gain the most important
understandings about software that there are to be had. Because here’s the first fact I’m
going to give you, one of the last ones I discovered:

The difference between a bad programmer and a good programmer is
understanding.

That is, bad programmers don’t understand what they are doing, and good program-
mers do. Believe it or not, it really is that simple. The more you understand what you
are doing, the better you can do it. It applies to programming just the same as every
other field in the world, except that it’s more important in programming because writ-
ing software is almost purely a mental activity where understanding is everything.

Now, I’m not saying that all of the ideas in this book are going to instantly solve your
problems for you, or tell you exactly what to do in your specific situation. Instead, this
book will give you new ways to think about software development. It’s up to you to
use those ways of thinking to solve your own problems based on what’s best for your
situation. Only you can actually know enough about what’s going on with your soft-
ware to make correct specific decisions about it. This book just contains general prin-
ciples to help guide you in making those decisions.

Even if you aren’t a programmer, you may still find this book useful for several reasons:

• It is an excellent educational tool to use in software organizations.

• It will allow you to more effectively understand why software engineers want to
do certain things, or why software should be developed in a certain way.

• It can help you communicate your ideas effectively to software engineers, by help-
ing you understand the fundamental principles on which good software engineers
base their decisions.

Ideally, everybody who works in the software industry should be able to read and
understand this book, even if they don’t have a lot of programming experience, or even
if English is not their native language. Having more technical understanding will help
in grasping some of the concepts, but most require no programming experience what-
soever to understand.

Preface | vii

You’ll notice, in fact, that even though this book is about software development, it
contains almost no program code. How can that be? Well, the idea is that these prin-
ciples should apply to any software project, in any programming language. You
shouldn’t have to know some specific programming language just to understand things
that apply to all programming, everywhere. Instead, real-world examples and analogies
are used throughout the book to help you get a better understanding of each principle,
as it is presented.

Most of all, I hope that this book helps you, helps your software, and helps bring sanity,
order, and simplicity into the field of software development.

Definitions, Facts, Rules, and Laws
This book contains a series of definitions, facts, rules, and laws for software develop-
ment. Most of these are offset as indented, bold paragraphs in the text to highlight their
importance.

• Definitions tell you what something is and how you would use it.

• Facts are just true statements about something. Any true piece of information is a
fact.

• Rules are statements that give you true advice, cover something specific, and help
guide decisions, but do not necessarily help you predict what will happen in the
future or figure out other truths. They usually tell you whether or not to take some
action.

• Laws are facts that will always be true, and that cover a broad area of knowledge.
They help you figure out other important truths and allow you to predict what will
happen in the future.

Out of all of these, the laws are the most important. In this book, you will know that
something is a law because the text will explicitly say so. If you aren’t sure what category
some piece of information falls into, Appendix B lists every major piece of information
in the book and labels it clearly as a law, a rule, a definition, or just a plain-old fact.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names.

viii | Preface

This icon signifies a tip, suggestion, or general note.

Attribution and Permissions
This book is here to help you get your job done. If you reference limited parts of it in
your work or writings, we appreciate, but do not require, attribution. An attribution
usually indicates the title, author, publisher, and ISBN. For example: “Code Simplicity:
The Fundamentals of Software by Max Kanat-Alexander (O’Reilly). Copyright 2012
Max Kanat-Alexander, 978-1-4493-1389-0.”

How to Contact The Author
I have a blog and website at http://www.codesimplicity.com/ where you can see my latest
thoughts about software development, make contributions, contact me for speaking
engagements, submit comments and corrections, or just send me your thoughts on
software development in general.

Preface | ix

How to Contact O’Reilly
If you have general comments and questions about this book, you can send them to us
at:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

illymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
My editors, Andy Oram and Jolie Kanat, have been an invaluable resource. Andy’s
feedback was both insightful and brilliant. Jolie’s insistence and support were ulti-
mately what got this book published, and her editing work on the early drafts was
appreciated.

My copyeditor, Rachel Head, has a remarkable talent for clarifying and improving
everything.

Elissa Shevinsky’s post-publication review changed the tone and flow of this book sig-
nificantly for the better.

All the programmers that I’ve worked with and talked with in the open source com-
munity also deserve thanks—particularly my fellow developers on the Bugzilla Project
who helped me try out all the ideas in this book on a real, live software system over the
course of many years.

x | Preface

The comments and feedback I’ve received on my blog throughout the years have helped
me shape the form and content of this book. Everyone who has participated there
deserves thanks, even those who simply encouraged me or let me know they’d read an
article.

On a personal level, I am tremendously grateful to Jevon Milan, Cathy Weaver, and
everybody who works with them. In a very real sense, they are responsible for my being
able to write this book. And finally, my hat’s off to my friend Ron, without whom this
book would not have even been possible.

Content Updates

June 13, 2012
• Re-wrote Preface and Chapter 1.

• Eliminated a chapter that used to live between Chapters 1 and 2 which wasn’t
necsesary to the content.

• Removed parts of what is now Chatper 2 to make it shorter.

• Fixed some formatting issues and the wording of some rules.

Preface | xi

CHAPTER 1

Introduction

All of us have been taught that software is “a series of instructions given to the com-
puter,” and this is true. However, there is no field in which a set of instructions and the
result of those instructions are so closely linked as they are in the field of software
development. In other fields, people write instructions and then hand them off to oth-
ers, often waiting a long time to see them carried out. But when we write code, there
is nobody between us and the computer. The result is exactly what the instructions said
to do, without question. The quality of the end result is dependent entirely upon the
quality of the machine, the quality of our ideas, and the quality of our code.

Of these three factors, the quality of the code is the largest problem faced by software
projects today. As a result, most of this book is focuses on improving code quality. I
do touch on ideas and machines as well in a few places, but mostly the focus is on
improving the structure and quality of the instructions that we are giving to the ma-
chine.

However, it’s important to remember that we are doing so purely because we desire a
better result. Nothing in this book forgives a poor result—the entire reason that we
focus on improving code is because improving the code is the most important problem
we must solve in order to improve the result.

Why Simplicity?
If any appliance in my house malfunctioned as often as my computer does, I would
return it. Users (and sometimes even programmers) have become used the idea that
“software just has bugs.” People seem to just accept that systems will bloat over time,
becoming unmaintainable and unstable monstrosities that eventually have to be
thrown away and re-written.

But none of this is inevitable. Instability, bloat, and various other code problems don’t
arise out of some natural law of the universe that requires all software to suck.

Instead, they arise almost entirely out of complexity.

1

When we start off, our software systems are small and easy to maintain. But they all
grow, in time. The average software system becomes large enough that no human being
could hope to hold all of its code in their mind at once. This isn’t good or bad, it’s just
a fact. Effective software systems are, as a whole, inherently complex. The only hope
we have for working with these systems is to keep the individual pieces simple, so that
when we look at those pieces, we can comprehend them. Programming, in essence,
must become the act of reducing complexity to simplicity.

If individual developers don’t simplify the pieces of the code they work on, then those
pieces become hard to understand. That makes them hard to debug, hard to modify,
and hard to add features to. If too many pieces of the system become complex, the
system as a whole can no longer be maintained. This is where nearly all the problems
of modern software development arise from—individual developers adding complexity
to the system instead of taking it away.

A good programmer should do everything in his power to make what he
writes simple for other programmers to use and comprehend.

Misconceptions About Simplicity
Sometimes this idea of simplicity is misunderstood to mean that programs should not
have a lot of code, or shouldn’t use advanced technologies. But that’s not true. Some-
times a lot of code actually leads to simplicity; it just means more writing and more
reading, which is fine. And usually, advanced technologies lead to more simplicity, even
though learning them takes time.

Some people believe that writing simple code takes more time than quickly writing
something that “does the job.” There is no data of which I am aware that validates this
idea. Serious software development nearly always has long timelines—weeks or months
at the shortest. When you add complexity into your program, you’re slowing yourself
down tomorrow. Every study that I have read (and all of my personal experience) con-
cludes that writing simple code ultimately gets the job done faster, even when you think
that complexity is a shortcut.

Software Design
A lot of this book is about software design, the process of planning out the structure
of your code.

Whenever you see the word “design” in this book, it refers to software
design, not visual design, user interface design, or some other sort of
design.

2 | Chapter 1: Introduction

There’s always some amount of design involved in software, even if it’s just a quick
decision before your fingers hit the keyboard. On a team of programmers, every person
is involved in design. The lead developer is in charge of designing the overall architec-
ture of the entire program. The senior programmers are in charge of designing their
own large areas. And the junior programmers are in charge of designing their parts of
the program, even if they’re as simple as one part of one file. There is even a certain
amount of design involved in writing a single line of code.

Everybody who writes software is a designer.

Every single person on a software team is responsible for making sure that their own
code is well designed. Nobody who is writing code for a software project can ignore
software design, at any level.

However, this does not mean that design is a democracy. You must not design by com-
mittee. The result will be an actively bad design—one which makes things more com-
plex instead of simpler. Instead, all developers should have the authority to make good
design decisions in their own areas. If they make poor or mediocre decisions, these
should be overridden by a senior developer or the lead programmer, who should have
veto power over the designers below them.1 But otherwise, responsibility for the design
of code should rest with the people who are actually working on it.

A designer should always be willing to listen to suggestions and feedback, because
programmers are usually smart people who have good ideas. But after considering all
the data, any given decision must be made by an individual, not by a group of people.

1. If you are the one overriding a decision, attempt to educate the other programmer when you do it. Show
how or why your decision is better than hers. If you do this, over time you will have to override that
programmer less and less. Some programmers never learn, though—if after several months or years of
such education a programmer continues to make numerous bad decisions, he should be removed from
your team. However, most programmers are very clever people who pick things up rapidly, so this is
rarely a concern.

Software Design | 3

CHAPTER 2

The Purpose of Software

Before we can dive into the laws of software development, we have to understand what
direction we’re heading in with them. What’s the yardstick for determining whether
they work or not? Well, ideally we would have some purpose in mind. Then we could
say that our ideas are valid to the degree that they accomplish that purpose.

Thus, what we need is a statement of the purpose of software itself. Not the personal
purposes of the developers writing it, or the reasons the organization has for hiring
programmers, but the actual purpose of software as a whole. Then we can see if our
laws and rules help achieve that purpose.

Is it possible to derive a single statement of purpose that would fit all software? Well,
I believe that I have.

The purpose of software is to help people.1

We can break this down to a more specific purpose for individual pieces of software.
For example, a word processor exists to help people write things, and a web browser
exists to help people browse the Web.

Some pieces of software exist only to help specific groups of people. For example, there
are many pieces of accounting software that exist to help accountants; these target only
that specific group of people.

What about software that helps animals or plants? Well, its purpose is really to help
people help animals or plants.

The important thing here is that software is never there to help inanimate objects.
Software does not exist to help the computer, it always exists to help people. Even when
you’re writing libraries, you’re writing to help programmers, who are people. You are
never writing to help the computer.

1. This fact (the purpose of all software) is more important than a law. In English, there is no simple word
for this type of fact. We could perhaps call it a “senior law,” even though it doesn’t quite fit the criteria
for a law (for example, it doesn’t predict the future). For simplicity’s sake, the appendixes at the end of
this book list this fact as a law, and otherwise we just refer to it as “the Purpose of Software.”

5

Now, what does “help” mean? In some ways, it’s subjective—that which helps one
person may not help another. But the word does have a dictionary definition, so it’s
not completely up to each individual what the word itself means. Webster’s New World
Dictionary of the American Language defines “help” as:

to make it easier for (a person) to do something; aid; assist. Specifically...to do part of
the work of; ease or share the labor of.

There are many things you could help with—organizing a schedule, writing a book,
planning a diet, anything. What you help with is up to you, but the purpose is always
to help.

The purpose of software is not “to make money” or “to show off how intelligent I am.”
Anybody writing with those as their only purposes is violating the purpose of software
and is quite likely to get into trouble. Granted, those are ways of “helping” yourself,
but that’s a pretty limited scope of help, and designing with only those purposes in
mind is likely to lead to lower-quality software than genuinely designing to help people
do what they need or want to do.2

People who cannot conceive of helping another person will write bad software—that
is, their software won’t help people very much. In fact, it might be theorized (as a guess,
based on observation of many programmers over time) that your potential ability to
write good software is limited only by your ability to conceive of helping another.

Overall, when we are making decisions about software, our guiding principle can be
how we can help. (And remember, there are varying degrees of help—one can help a
lot or a little, many people or just a few.) You can even prioritize feature requests this
way. Which feature will help people the most? That feature should be given the highest
priority. There’s more to know about prioritizing features, but “How much does it help
our users?” is a good, basic question to ask about any proposed change to your software
system.

In general, this purpose—to help people—is the most important thing to keep in mind
when designing software, and defining it allows us now to create and understand real
laws for software design.

Real-World Application
How can we apply the purpose of software to our projects in the real world? Well, let’s
say we’re writing a text editor for programmers. The first thing we need to do is deter-
mine the purpose of our software. It’s best to keep it simple, so let’s say the purpose is

2. Note that “to make money” can certainly be one of your personal purposes or a purpose of your
organization—there’s nothing wrong with making money. It just shouldn’t be the purpose of your
software. In any case, the amount of money you make is likely to be directly related to how much your
software helps people. In fact, the two primary factors that determine the income of a software company
are probably the business skill of your organization (including administration, management, marketing,
and sales) and how much your software helps people.

6 | Chapter 2: The Purpose of Software

“to help programmers edit text.” It’s fine to be more specific than that, and sometimes
it’s helpful, but if the group can’t agree on a specific purpose, at least come up with a
simple one like this.

Now that we have the purpose, let’s look at all of our feature requests. For each one
we can ask ourselves, “How would this feature help programmers edit text?” If the
answer is “It wouldn’t,” we can immediately cross that feature off our list. Then, for
each of the remaining features, we can write down the answer as a short sentence. For
example, suppose somebody asks us to add keyboard shortcuts for common actions.
We could say “This helps programmers edit text because it allows them to interact with
the program more quickly without taking a long break from typing.” (You don’t ac-
tually have to write these things down, if that doesn’t seem practical for your situation
—just having some idea of the answer for yourself is enough.)

There are also several other useful reasons to ask this question:

• It helps resolve uncertainties about the feature’s description or how it should be
implemented. For example, the answer above about keyboard shortcuts tells us
that the implementation must be fast, because that’s the value users get out of it.

• It helps the team come to an agreement about the value of a feature. Some people
may not like the idea of keyboard shortcuts, but everybody should be able to agree
that the answer above explains why they are valuable. In fact, some developers may
even have a better idea of how to fulfill that user’s need (interacting with the text
editor more quickly) without keyboard shortcuts. That’s fine! If the answer leads
us to a better feature idea, we should implement that instead. The answer tells us
what’s really needed, not just what the user thought he wanted.

• Answering the question will make it obvious that some features are more important
than others. This helps the project leaders prioritize work.

• At the worst, if our text editor has become bloated with too many features over
time, the answer can help us decide which features should be removed.

We could also make a list of bugs, which we could look over and ask the opposite
question: “How does this bug hinder programmers’ editing of text?” Sometimes the
answer is obvious, so it doesn’t really need to be written down. For example, if the
program crashes when you try to save a file, you don’t need to explain why that’s bad.

There are numerous other ways to apply the purpose of software in daily work; these
are just a few examples.

Real-World Application | 7

CHAPTER 3

The Future

The primary question that faces software designers is “How do I make decisions about
my software?” When faced with many possible directions you could go in, which option
is the best? It’s never a question of which decision would be absolutely right versus
which decision would be absolutely wrong. Instead, what we want to know is, “Given
many possible decisions, which of those decisions are better than others?” It’s a matter
of ranking decisions, and then choosing the best decision out of all the possibilities.
For example, a designer might ask himself, “There are 100 different features we could
work on today, but we only have the manpower to work on two. Which ones should
we work on first?”

The Equation of Software Design
The above question, and indeed every question of this nature in software design, is
answered by this equation:

where:

D
Stands for the desirability of a change. How much do we want to do something?

V
Stands for the value of a change. How valuable is this change? Usually, you would
determine this by asking “How much does this help our users?” although there are
other methods of determining value as well.

E
Stands for the effort involved in performing the change. How much work will the
change require?

9

Essentially, this equation says:

The desirability of any change is directly proportional to the value of the
change and inversely proportional to the effort involved in making the
change.

It doesn’t say whether a change is absolutely right or wrong; instead, it tells you how
to rank your options. Changes that will bring a lot of value and require little effort are
“better” than those that will bring little value and require a lot of effort.

Even if your question is “Should we stay the same and not change?” this equation tells
you the answer. Ask yourself “What is the value of staying the same?” and “What is
the effort involved in staying the same?” and compare that to the value of changing and
the effort involved in changing.

Value
What do we mean by “value” in the equation? The simplest definition of value would
be:

The degree to which this change helps anybody anywhere.

The most important people to help are your users. However, writing in features that
will help you support yourself financially is also a form of value—it’s valuable to you.
In fact, there are many ways a change can have value; these are just two examples.

Sometimes, determining the actual, precise numerical value of any particular change is
difficult. For example, say your software helps people lose weight. How do you measure
the exact value of helping somebody lose weight? You can’t, really. But you can know
with precision that some features of the software will help people lose weight a lot and
some features won’t help people lose weight at all. So, you can still rank changes by
their value.

Understanding the value of each possible change comes mostly from experience as a
developer and from doing proper research with users to find out what will help them
the most.

Probability of value and potential value
Value is actually composed of two factors: the probability of value (how likely it is that
this change will help a user), and the potential value (how much this change will help
a user during those times when it does help that person).

For example:

• A feature that could save somebody’s life, even if there is only a one in a million
chance of it being needed, is still a highly valuable feature. It has a high potential
value (saving a life), even though it has a low probability of value.

10 | Chapter 3: The Future

As another example, in a spreadsheet program you might add a feature that helps
blind people enter numbers into the system. Only a small percentage of people are
blind, but without this feature, they couldn’t use your software at all. Again, this
feature is valuable because it has a very high potential value, despite affecting only
a small group of users (a low probability of value).

• If there is a feature that will make 100% of your users smile, that is also a valuable
feature. It has a very minor potential value (making people smile), but it affects a
very large number of users, so it has a high probability of value.

• On the other hand, if you implement a feature that has just a one in a million chance
of making somebody smile, that’s not very valuable. That’s a feature with low
potential value and a low probability of value.

So, when considering value, you also have to consider:

• How many users (what percentage) will this change be valuable to?

• What is the probability that this feature will be valuable to a user? Or, stated another
way: how often will this feature be valuable?

• When it is valuable, how valuable will it be?

Balance of harm
Some changes may cause some harm in addition to the help they bring. For example,
some users may be annoyed if your software shows them ads, even if those ads help
support you as a developer.

Calculating a change’s value includes considering how much harm it may do, and bal-
ancing that against the help it brings.

The value of having users
Features that have no users have no immediate value. These could include features that
users can’t find, features that are too difficult to use, or features that simply don’t help
anybody. They may have value in the future, but they have no value now.

This also means that in most cases, you must actually release your software in order
for it to be valuable. A change that takes too long to make can actually end up having
zero value, because it doesn’t get released in time to help people effectively. It can be
important to take release schedules into account when determining the desirability of
changes.

Effort
Effort is a little easier to put into numbers than value is. Usually, you can describe effort
as “a certain number of hours of work by a certain number of people.” “One hundred
person-years” is an example of a commonly heard numerical measurement for effort,

The Equation of Software Design | 11

representing 100 years of work by 1 person, 1 year of work by 100 people, 2 years of
work by 50 people, etc.

However, even though effort can be put into numbers, measuring it in practical situa-
tions is very tricky—perhaps impossible. Changes can have many hidden costs that can
be hard to predict, such as the time you will spend in the future fixing any bugs the
changes introduce. But if you are an experienced software developer, you can still rank
changes by how much effort they will probably require, even if you don’t know the
exact numbers for each.

When considering the effort involved in a change, it’s important to take into account
all the effort that might be involved, not just the time you’re going to spend program-
ming. How much research will it take? How much communication will all of the de-
velopers have to do with each other? How much time will you spend thinking about
the change?

In short, every single piece of time connected with a change is part of the effort cost.

Maintenance
The equation as we have it so far is very simple, but it is missing an important element
—time. Not only do you have to implement a change, but you also have to maintain it
over time. All changes require maintenance. This is very obvious with some changes—
if you’re writing a program to do people’s taxes, you’re going to have to update it for
the new tax laws every year. But even changes that don’t immediately seem to have a
long-term maintenance cost will have one, even if it’s just the cost of having to make
sure that that code still works when you’re testing it next year.

We must also consider value both now and in the future. When we implement some
change to our system, it will help our current users, but it may also help all our future
users. It may even affect the total number of future users, thus changing how much our
software as a whole helps people.

Some features even change in value over time. For example, having a tax program
understand the year 2009 tax laws is valuable in 2009 and 2010, but not so valuable
once 2011 comes around. That’s a feature that becomes less valuable over time. Some
features also become more valuable over time.

So, looking at this realistically, we see that effort actually involves both the effort of
implementation and the effort of maintenance, and value involves both the value now
and the value in the future. In equation form, this looks like:

where:

12 | Chapter 3: The Future

Ei
Stands for the effort of implementation.

Em
Stands for the effort of maintenance.

Vn
Stands for value now.

Vf
Stands for future value.

The Full Equation
With everything plugged in, the full equation looks like this:

Or, in English:

The desirability of a change is directly proportional to the value now plus
the future value, and inversely proportional to the effort of implementation
plus the effort of maintenance.

This is the primary law of software design. However, there is a bit more to know about
it.

Reducing the Equation
“Future value” and “effort of maintenance” both depend on time, which causes inter-
esting things to happen with the equation when we apply it to a real-world situation.
To demonstrate these, let’s pretend we can use money to solve the equation for both
value and effort. “Value” will be measured by how much money the change will make
us. “Effort” will be measured in terms of how much money it will cost us to implement
the change. You should not use the equation this way in the real world, but for the sake
of our example, it’s going to simplify things.

So, let’s say we have a change we want to make where the equation looks like this:

In other words, this change costs $1,000 to implement (effort of implementation, bot-
tom left) and gets us $10,000 immediately (value now, top left). Then, each day after
that, it makes us $1,000 (future value, top right) and it costs $100 to maintain (effort
of maintenance, bottom right).

The Equation of Software Design | 13

After 10 days, the accumulated future value totals $10,000, and the effort of mainte-
nance totals $1,000. That’s equal to the original “value now” and cost of implementa-
tion, after just 10 days.

After 100 days, the future value totals $100,000, and the maintenance effort comes to
$10,000.

After 1,000 days, the total future value reaches $1,000,000 and the effort of mainte-
nance totals $100,000. At this point, the original “value now” and cost of implemen-
tation look pretty tiny in comparison. As time goes on, they will become even less
significant, eventually disappearing from importance entirely. Thus, as time goes on
our equation reduces to this:1

And in fact, nearly all decisions in software design reduce entirely to measuring the
future value of a change versus its effort of maintenance. There are situations in which
the present value and the implementation effort are large enough to be significant in a
decision, but they are extremely rare. In general, software systems are maintained for
so long that the value now and the effort of implementation are guaranteed to become
insignificant in almost all cases when compared to the long-term future value and effort
of maintenance.

What You Do and Do Not Want
The primary lesson to learn here is that we want to avoid situations where, for a given
change, the effort of maintenance will eventually outweigh the future value. For ex-
ample, imagine that you implement a change where the effort and value look like this
across five days:

Day Effort Value

1 $10 $1,000

2 $100 $100

3 $1,000 $10

4 $10,000 $1

5 $100,000 $0.10

Total $111,110 $1111.10

1. Optional note for mathematicians: If you have studied calculus, you may have realized that we’re starting
to analyze the limit of the equation as time approaches infinity. In general, you should be thinking of the
Equation of Software Design as though it were an infinite series with a limit, not just a static equation.
However, for simplicity’s sake, it is written here as a static equation.

14 | Chapter 3: The Future

Clearly, that is a terrible, terrible change that you never should have made. If things
keep going at that rate, you won’t be able to maintain the system at all—it will become
infinitely expensive and the value you’re gaining each day will become $0.

Any situation in which the effort of maintenance increases faster than the value is going
to get you into trouble, even if it looks okay at first:

Day Effort Value

1 $1000 $1000

2 $2000 $2000

3 $4000 $3000

4 $8000 $4000

Total $15,000 $10,000

The ideal solution—and the only way to guarantee success—is to design your systems
such that the effort of maintenance decreases over time, and eventually becomes zero
(or as close to it as possible). As long as you can do that, it doesn’t matter how large or
small the future value becomes; you don’t have to worry about it. For example, these
tables show desirable situations:

Day Effort Value

1 $1,000 $0

2 $100 $10

3 $10 $100

4 $0 $1,000

5 $0 $10,000

Total $1,110 $11,110

Day Effort Value

1 $20 $10

2 $10 $10

3 $5 $10

4 $1 $10

5 $0 $10

Total $36 $50

Changes with a higher future value are still more desirable, but as long as every decision
has a maintenance cost that approaches zero over time, you can’t get yourself into a
dangerous future situation.

The Equation of Software Design | 15

Theoretically, as long as the future value is always larger than the maintenance effort,
the change is still desirable. So, you could make some change where the maintenance
effort and the future value both increased, as long as the future value kept on being
large enough to outweigh the effort of maintenance:

Day Effort Value

1 $1 $0

2 $2 $2

3 $3 $4

4 $4 $6

5 $5 $8

Total $15 $20

Such a change isn’t bad, but it is more desirable to make a change whose maintenance
effort decreases, even if it has a larger effort of implementation. If the effort of mainte-
nance decreases, the change actually becomes more and more desirable over time. That
makes it a better choice than other possibilities.

Often, designing a system that will have decreasing maintenance effort requires a sig-
nificantly larger effort of implementation—quite a bit more design work and planning
are required. However, remember that the effort of implementation is nearly always an
insignificant factor in making design decisions, and should mostly be ignored.

In short:

It is more important to reduce the effort of maintenance than it is to reduce
the effort of implementation.

That is one of the most important things there is to know about software design.

But what causes maintenance effort? How do we design systems whose maintenance
effort decreases over time? That is the subject of the majority of the rest of this book.
But before we get to that, we have to examine the future a little bit more.

The Quality of Design
It is very easy to write software that helps one person, right now. It is much more
difficult to write software that helps millions of people now and continues to do so
decades into the future. But where is most of the programming effort going to be, and
when will most of those users be using the software? Right now, or in those decades to
come?

The answer is that there will be far more programming work to be done—and far more
users to help—in the future than in the present. Your software will have to compete
and exist in the future, and the effort of maintenance and number of users will grow.

16 | Chapter 3: The Future

When we ignore the fact that there is a future and make things that “just work” in the
present, our software becomes hard to maintain in the future. When software is hard
to maintain, it’s hard to make it continue to help people (one of our goals in software
design). If you can’t add new features and you can’t fix problems, you eventually end
up with “bad software.” It stops helping its users, and it’s full of bugs.

This leads us to the following rule:

The quality level of your design should be proportional to the length of future
time in which your system will continue to help people.

If you are writing software that will be used for only the next few hours, you don’t have
to put too much effort into its design. But if your software might be used for the next
10 years (and this happens far more often than you might expect, even if you think it’s
only going to be used for the next 6 months), then you have to put a lot of work into
the design. When in doubt, design your software like it’s going to be used for a long,
long time: don’t lock yourself into any one method of doing things, keep it flexible,
don’t make any decisions you can’t ever change, and put a lot of attention on design.

Unforeseeable Consequences
So, when we design software, the future should be our primary focus. However, one
of the most important things to know about any kind of engineering is this:

There are some things about the future that you do not know.

In fact, when it comes to software design, you just can’t know most things about the
future.

The most common and disastrous error that programmers make is predict-
ing something about the future when in fact they cannot know.

For example, imagine that a programmer wrote a piece of software in 1985 that fixed
broken floppy disks. It couldn’t fix anything else—every single piece of it was totally
dependent upon exactly how floppy disks worked. That software would now be ob-
solete, because people no longer use floppy disks. That programmer predicted “people
will always use floppy disks”—something he could not actually know.

It may be possible to predict the short-term future, but the long-term future is largely
unknown. The long term is also more important to us than the short term, because our
design decisions will have more consequences in that longer period.

You are safest if you don’t attempt to predict the future at all, and instead
make all your design decisions based on immediately known present-
time information.

Unforeseeable Consequences | 17

Now, that may sound like the exact opposite of what we’ve been saying so far in this
chapter, but it is not. The future is the most important thing to consider in making
design decisions. But there is a difference between designing in a way that allows for
future change and attempting to predict the future.

As an analogy, let’s say that you have a simple choice between eating and starving to
death. You don’t have to predict the future in order to make that choice—you know
that eating is the better decision. Why? Because it will keep you alive right now, and
being alive makes for a better future than being dead. The future is important, and we
want to consider it in our decisions. We choose to eat now because it makes for a better
future. But the future doesn’t have to be predicted—we don’t have to say something
specific like “I am eating now because tomorrow I will have to save a baby’s life.” No
matter what happens tomorrow, it will be a better tomorrow if you eat now rather than
starve to death.

Similarly, in software design we can make certain decisions based on information that
we have now, for the purpose of making a better future (decreasing maintenance effort
and increasing value), without having to predict the specifics of what’s going to happen
in that future.

There are limited exceptions—sometimes you know exactly what is going to happen
in the short-term future, and you can make decisions based on that. But if you’re going
to do that, you must be very certain about that future, and it must be very near at hand.
No matter how intelligent you are, there is simply no possible way to accurately predict
long-term futures.

Let’s take an example outside of the realm of programming: CDs, which were designed
in 1979 to replace cassette tapes as the primary method of listening to music. Who
could have predicted that 20 years later, DVDs would be made in the same size and
shape so that manufacturers could make CD/DVD drives for computers? And who
could have imagined the problems of spinning a CD 50 times faster than it was supposed
to be spun, when it was read in a CD-ROM drive?

This is why, in any type of engineering—including the field of software development
—we have “guiding principles.” These are certain rules that, when we follow them,
keep things working well no matter what happens in the future. That is what the laws
and rules of software design are—our “guiding principles” as designers.

So yes, it’s important to remember that there will be a future. But that doesn’t mean
you have to predict that future. Instead, it explains why you should be making decisions
according to the laws and rules in this book—because they lead to good future software,
no matter what that future brings.

It is not even possible to predict all the ways that a particular law or rule may help you
in the future—but it will help, and you’ll be glad you applied it in your work.

You’re welcome to disagree with the laws, rules, and facts you read here. Please do
come to your own conclusions about them. But you should be warned that if you don’t

18 | Chapter 3: The Future

follow them, you’re probably going to end up in a mess of trouble somewhere down
the line, in a future you can’t predict.

Unforeseeable Consequences | 19

CHAPTER 4

Change

Now that we understand the importance of the future, and that there are some things
we don’t and can’t know about it, what can we know about it?

Well, one thing you can be sure of is that as time goes on, the environment around your
software is going to change. Nothing stays the same forever. This means that your
software will have to change in order to adapt to the environment around it.

This gives us the Law of Change:

The longer your program exists, the more probable it is that any piece of it
will have to change.

As you go into an infinite future, you start tending toward a 100% probability that every
single piece of your program will have to change. In the next five minutes, probably no
part of your program will have to change. In the next 10 days, a small piece of it might.
In the next 20 years, probably a majority of it (if not all of it) will have to change.

It’s hard to predict exactly what will change, and why. Maybe you wrote a program for
4-wheeled cars, but in the future everybody will drive 18-wheel trucks. Maybe you
wrote a program for high school students, but high school education will get so bad
that the students can’t understand it anymore.

The point is, you don’t have to try to predict what will change; you just need to know
that things will change. Write your software so that it’s as flexible as reasonably pos-
sible, and you’ll be able to adapt to whatever future changes do come along.

Change in a Real-World Program
Let’s look at some data on how a real-world program changed over time. There are
hundreds of files in this particular program, but the details for each file won’t fit on this
page, so four files have been chosen as examples. Details on these files are given in
Table 4-1.

21

Table 4-1. Changes in files over time

 File 1 File 2 File 3 File 4

Period analyzed 5 years, 2 months 8 years, 3 months 13 years, 3 months 13 years, 4 months

Lines originally 423 192 227 309

Unchanged lines 271 101 4 8

Lines now 664 948 388 414

Grew by 241 756 161 105

Times changed 47 99 194 459

Lines added 396 1,026 913 3,828

Lines deleted 155 270 752 3,723

Lines modified 124 413 1,382 3,556

Total changes 675 1,709 3,047 11,107

Change ratio 1.6x 8.9x 13x 36x

In this table:

Period analyzed
The time period over which the file existed.

Lines originally
How many lines were in the file when it was originally written.

Unchanged lines
How many lines are the same now as they were when the file was originally written.

Lines now
How many lines there are in the file now, at the end of the analysis period.

Grew by
The difference between “Lines now” and “Lines originally.”

Times changed
The total number of times a programmer made some set of changes to the file
(where one set of changes involves changes to many lines). Usually one set of
changes will represent one bug fix, one new feature, etc.

Lines added
How many times, over the history of the file, a new line was added.

Lines deleted
How many times, over the history of the file, an existing line was deleted.

Lines modified
How many times, over the history of the file, an existing line was changed (but not
newly added or deleted).

22 | Chapter 4: Change

Total changes
The sum of the “Lines added,” “Lines deleted,” and “Lines modified” counts for
that file.

Change ratio
How much larger “Total changes” is than “Lines originally.”

When we refer to “lines” in the above descriptions, that includes every line in the files:
code, comments, documentation, and empty lines. If you were to do the analysis
without counting comments, documentation, and empty lines, one major difference
you would see is that the “Unchanged lines” count would become much smaller in
proportion to the other numbers. (In other words, the unchanged lines are nearly al-
ways comments, documentation, or empty lines.)

The most important thing to realize from this table is that a lot of change happens in a
software project. It becomes more and more likely that any particular line of code will
change as time goes on, but you can’t predict exactly what is going to change, when
it’s going to change, or how much it will have to change. Each of these four files changed
in very different ways (you can see this even just looking at the numbers), but they all
changed a significant amount.

There are a few other interesting things about the numbers, as well:

• Looking at the change ratio, we see that more work was put into changing each
file than writing it originally. Obviously, line counts aren’t a perfect estimate of
how much work was actually done, but they do give us a general idea. Sometimes
the ratio is huge—for example, file 4 had 36 times as many total changes as it did
original lines.

• The number of unchanged lines in each file is small compared to its “Lines origi-
nally” count, and even smaller compared to its “Lines now” count.

• A lot of change can happen to a file even if it only gets a little bit bigger over time.
For example, file 3 grew by only 161 lines over 13 years, but during that time the
total changes count reached 3,047 lines.

• The total changes count is always larger than the lines now count. In other words,
you’re more likely to have changed a line in a file than to have a line in a file, once
the file has been around for long enough.

• In file 3, the number of lines modified is larger than the number of lines in the
original file plus the number of lines added. That file’s lines have been modified
more often than new lines have been added. In other words, some lines of that file
have changed over and over. This is common on projects with a long lifetime.

The above points aren’t all that could be learned here—there is a lot more interesting
analysis that could be done on these numbers. You’re encouraged to dig into this data
(or work out similar numbers for your own project) and see what else you can learn.

Change in a Real-World Program | 23

Another good learning experience is looking over the history of changes
made to one particular file. If you have a record of every change made
to files in your program, and you have one file that’s been around for a
long time, try looking at each change made over its lifetime. Think about
if you could have predicted that change when the file was originally
written, and consider whether the file could have been better written
originally to make the changes simpler. Generally, try to understand
each change and see if you can learn anything new about software de-
velopment from doing so.

The Three Flaws
There are three broad mistakes that software designers make when attempting to cope
with the Law of Change, listed here in order of how common they are:

1. Writing code that isn’t needed

2. Not making the code easy to change

3. Being too generic

Writing Code That Isn’t Needed
There is a popular rule in software design today called “You Ain’t Gonna Need It,” or
YAGNI for short. Essentially, this rule states that you shouldn’t write code before you
actually need it. It’s a good rule, but it’s misnamed. You actually might need the code
in the future, but since you can’t predict the future you don’t know how the code needs
to work yet. If you write it now, before you need it, you’re going to have to redesign it
for your real needs once you actually start using it. So save yourself that redesign time,
and simply wait until you need the code before you write it.

Another risk of writing code before you need it is that unused code tends to develop
“bit rot.” Since the code never runs, it might slowly become out of sync with the rest
of your system and thus develop bugs, and you’ll never know. Then, when you start to
use it, you’ll have to spend time debugging it. Or, even worse, you might trust the never-
before-used code and not check it, and it may cause bugs for users. In fact, the rule here
should actually be expanded to read:

Don’t write code until you actually need it, and remove any code that isn’t
being used.

That is, you should also get rid of any code that is no longer needed. You can always
add it back later if it becomes needed again.

There are lots of reasons people think that they should write code before it’s needed,
or keep around code that isn’t being used. First off, some people believe they can get
around the Law of Change by programming every feature that any user could ever
possibly need, right now. Then, they think, the program won’t have to be changed or

24 | Chapter 4: Change

improved in the future. But this is wrong. It’s not possible to write a system that will
never change, as long as that system continues to have users.

Others believe that they are saving themselves time in the future by doing some extra
work now. In some cases that philosophy works, but not when you’re writing code that
isn’t needed. Even if that code ends up being needed in the future, you will almost
certainly have to spend time redesigning it, so you’re actually wasting time.

Writing Unnecessary Code: A Real-World Example
Once upon a time, a developer—let’s call him Max (ahem)—mistakenly thought he
could ignore this rule. In his program, there were drop-down boxes where users could
pick a value. Every company that used the program could customize the list of choices
displayed in each drop-down box. Some companies might want the choices to be names
of colors. Others might want them to be names of cities. They could be anything. So,
the list of valid choices needed to be stored somewhere that each company could
modify it.

The obvious thing to do was just to store the list of values, and nothing else. After all,
that’s all that was needed. But Max decided to store two things: the list of values, and
also information about whether each value was currently “active”—that is, if users
could currently select that value, or if it was temporarily disabled.

However, Max never wrote any code to actually use the information about whether or
not each field was active. All choices were active, all the time, no matter what the stored
data said. He was sure that he was just about to write code to use the “active” infor-
mation, though—maybe even tomorrow.

Several years passed, and the code to handle the “active” data didn’t get written. In-
stead, the data just sat there, unused, confusing people and causing bugs. Numerous
customers and developers wrote to Max, wondering why nothing happened when they
manually edited the list of values and set choices as being inactive. One developer
improperly assumed that the “active” field was in use and wrote a piece of code that
used it, even though the rest of the system didn’t use it. This got through to customers,
and they started reporting strange bugs that took a lot of work to track down.

Eventually, some developer came along and said, “Today I will implement the ability
to disable choices!” However, he discovered that the “active” field wasn’t designed
perfectly for his needs, so he had to do a fair bit of redesign work to implement his
feature.

Net result: several bugs, lots of confusion, and extra work for the developer who did
eventually actually need the code. And this was a relatively minor violation of the rule!
Severe violations can have considerably worse consequences, including missed dead-
lines, major catastrophes, and possibly even the destruction of your software project.

The Three Flaws | 25

Not Making the Code Easy to Change
One of the great killers of software projects is what we call “rigid design.” This when
a programmer designs code in a way that is difficult to change. There are two ways to
get a rigid design:

1. Make too many assumptions about the future.

2. Write code without enough design.

Example: Making Too Many Assumptions About the Future
A government agency—let’s call it The Veteran’s Hospital—wants to make a program.
We’ll call this program “The Healthcare System.” Before making this system, it decides
to write a document stating exactly how the entire system should be implemented. It
spends a year writing this document, making every single decision about the entire
system during this time.

The developers then spend three years writing the system according to this document.
As they work, they discover that the design in the document is contradictory, incom-
plete, and hard to implement. But the Hospital took an entire year to write it—the
developers can’t wait another year to have it revised. So they implement the system,
following the document as closely as they can.

The system is completed and given to the users for the first time. However, the situation
at the Hospital has changed dramatically in the last four years, and when the users start
actually using The Healthcare System, they realize they want something completely
different. But the system is made up of hundreds of thousands of lines of code, all
designed rigidly according to the document—it simply can’t be changed without
months or years of effort.

So the Hospital starts writing a new document for a new system, and the process starts
all over again.

The Hospital’s mistake was attempting to predict the future. They assumed that what-
ever decisions they made in the document were valid for real users, and would continue
to be valid when the system was completed. When the actual future arrived, it wasn’t
at all like what they had predicted, and their system was a multimillion dollar failure.

A better solution would have been to specify just one feature, or a tiny set of features,
and immediately ask the developers to implement it. Then there could have been a
back-and-forth of communication and user testing as development occurred. When
the first set of features was done and released, they could have worked on additional
features, one at a time, until they eventually had a system that was well designed and
fully served its users’ needs.

26 | Chapter 4: Change

Example: Code Without Enough Design
A developer is asked to create a program that people can use to keep track of tasks they
need to do. To create a new “task” in the system, users fill out a form with some in-
formation, like a short summary of the task and how far along they are on it. This stores
data in a database. Then, they can make notes about their progress on the task as time
goes on, and eventually note that they have completed the task.

There’s a field called “Status” that indicates how far along the user is in performing the
task. The values for this field are “No Work Done,” “In Progress,” “On Hold,” and
“Complete.” When the Status field has the value “No Work Done,” it can change only
to “In Progress.” When the Status field is “In Progress,” it can change to “On Hold” or
“Complete.” And when it is “Complete,” it can change only back to “In Progress.”

There are 10 other fields in this program with similar rules. They each contain some
different piece of information about the task (for example, to whom it’s assigned, what
its deadline is, and so on).

To implement these rules, the developer writes one very long, continuous piece of code
with no structure, in a single file. He validates each field with custom code that is specific
to that field. For example, every time he needs to check if the status is “Complete,” he
literally writes the word “Complete” in the code. Also, the code is not written to be
reusable. Where the program has similar fields, the developer cut-and-pastes code and
then modifies it slightly for the new field.

The code works. The file is 3,000 lines long. It almost entirely lacks a design.

Several months later, this developer leaves the project.

A new developer comes along and is assigned to maintain this project. He quickly
discovers that this code is hard to change—if he changes one part of it, he also has to
change many other parts of it in the same way in order to keep it working. To make
matters even worse, the various parts are scattered around with no explanation or log-
ical system—you have to simply read the entire file every time you want to make a
change.

Customers start asking for new features. At first, the new developer does his best to
implement these new features. He adds even more code to this file. It ends up being
5,000 lines long.

Eventually, customers start asking for features that simply can’t be implemented with
this design. They want to send in information about tasks by email, but this code only
does it with a form. It’s all designed very specifically around how the form works—it
would never work with email.

Competitors start appearing that can update tasks by email. The project starts to lose
its customers.

The only reason that this project survives is that two developers spend an entire year
redesigning just this file so that it can be easily changed. They do their best to keep up

The Three Flaws | 27

with other feature requests while they’re redesigning, but most of their time is spent
on the redesign.1

The rule used to avoid rigid design is:

Code should be designed based on what you know now, not on what you
think will happen in the future.

Design based only on your immediate, known requirements, without excluding the
possibility of future requirements. If you know for a fact that you need the system to
do X, and just X, then just design it to do X, right now. It might do other things that
aren’t X in the future, and you should keep that in mind, but for now the system should
just do X.

When designing like this, it also helps to keep your individual changes small. When
you only have to make a small change, it’s easy to do some real design on it.

This isn’t to say that planning is bad. A certain amount of planning is very valuable in
software design. But even if you don’t write out detailed plans, you’ll be fine as long as
your changes are always small and your code stays easily adaptable for the unknown
future.

Being Too Generic
When faced with the fact that their code will change in the future, some developers
attempt to solve the problem by designing a solution so generic that (they believe) it
will accommodate every possible future situation. We call this “overengineering.”

The dictionary defines overengineering as a combination of “over” (meaning “too
much”) and “engineer” (meaning “design and build”). So, per the dictionary, it means
designing or building too much for your situation.

Wait—designing or building too much? What’s “too much”? Isn’t design a good thing?

Well, yes, most projects could use more design, as we saw in “Example: Code Without
Enough Design” on page 27. But once in a while, somebody really gets into it and just
goes overboard—sort of like building an orbital laser to destroy an anthill. An orbital
laser is an amazing engineering feat, but it costs an enormous amount of money, takes
far too long to build, and is a maintenance nightmare. Can you imagine having to go
up there and fix it when it breaks?

1. This is the story of a file called process_bug.cgi from a product called “Bugzilla.” The story has been
simplified somewhat from what actually happened, but the numbers (in terms of lines of code and
the time it took to fix it) are roughly accurate. If you want to see the entire history of the redesign
project to see how it was done, you can read the records listed here: https://bugzilla.mozilla.org/
showdependencytree.cgi?id=367914&hide_resolved=0.

28 | Chapter 4: Change

There are several other problems with overengineering:

1. You can’t predict the future, so no matter how generic your solution is, it will not
be generic enough to satisfy the actual future requirements you will have.

2. When your code is too generic, it often doesn’t handle specifics very well from the
user’s perspective. For example, say you design some code that treats all input the
same—it’s all just bytes. Sometimes this code processes text, and sometimes it
processes pictures, but all it knows is that it’s getting bytes. In a way, this is a good
design: the code is simple, self-contained, small, etc.

But then you make sure that no part of your code distinguishes between pictures
and text. This is too generic. When the user passes in a bad picture, the error she
gets is, “You passed in bad bytes.” It should have said, “You passed in a bad pic-
ture,” but your code is so generic that it can’t tell the user that. (There are lots of
ways that generic code can fall short when put to specific uses; this is just an
example.)

3. Being too generic involves writing a lot of code that isn’t needed, which brings us
back to our first flaw.

In general, when your design makes things more complex instead of simplifying things,
you’re overengineering. That orbital laser would hugely complicate the life of a person
who just needed to destroy some anthills, whereas some simple ant poison would
greatly simplify that person’s life by removing the ant problem (assuming it worked).

Being generic with the right things, in the right ways, can be the foundation of a suc-
cessful software design. However, being too generic can be the cause of untold com-
plexity, confusion, and maintenance effort. The rule for avoiding this flaw is similar to
the rule for avoiding rigid designs:

Be only as generic as you know you need to be right now.

Example: Being Too Generic
In one part of a certain program, the user filled out a form and the program sent several
hundred emails. This part of the program was very slow. The user would submit the
form and the program would sit there for a very long time, sending all the messages.

To make this faster, the developers decided to not send all of the emails immediately.
Instead, they would be sent in the background after the user submitted the form, using
a pre-existing piece of code called “Email Sender.”

The developer who started working on this change decided that some companies might
want to use something other than Email Sender. He wrote hundreds of lines of code to
allow customers to “plug in” other systems for doing background work. No customer
had ever asked for this; the developer just predicted that somebody would want this
specific sort of flexibility in the future.

Eventually, the Chief Architect of the program took over work on this change. He
removed all of the code for “plugging in” other systems, because there was no evidence

The Three Flaws | 29

that users wanted it. Thus, there was no evidence that the code should be that generic
right now. With those pieces removed, the change became much simpler.

Four years have passed since the change was originally made, and not a single customer
has needed the ability to plug in other systems. There was, factually, no reason to be
that generic.

Incremental Development and Design
There is a method of software development that avoids the three flaws by its very nature,
called “incremental development and design.” It involves designing and building a sys-
tem piece by piece, in order.

It is easiest to explain by example. Here’s how we would use it to develop a calculator
program that needs to add, subtract, multiply, and divide:

1. Plan a system that does only addition and nothing else.

2. Implement that system.

3. Fix up the now-existing system’s design so that it is easy to add a subtraction
feature.

4. Implement the subtraction feature in the system. Now we have a system that does
only addition and subtraction, and nothing else.

5. Fix up the system’s design again so that it is easy to add a multiplication feature.

6. Implement the multiplication feature in the system. Now we have a system that
does addition, subtraction, multiplication, and nothing else.

7. Fix up the system’s design again so that it is easy to add the division feature. (At
this point, this should take little or no effort, because we already improved the
design before implementing subtraction and multiplication.)

8. Implement the division feature in the system. Now we have the system we started
out intending to build, with an excellent design that suits it well.

This method of development requires less time and less thought than planning the
entire system up front and building it all at once. It may not be easy at first if you are
used to other development methods, but it will become easy with practice.

The tricky part of using this method is deciding on the order of implementation. In
general, you should pick whatever is simplest to work on at each step, when you get
there. We picked addition first because it was the simplest of all four operations overall,
and subtraction second because it logically built on addition in a very simple way. We
could possibly have picked multiplication second, since multiplication is just the action
of doing addition many times. The only thing we would not have picked second is
division, because stepping from addition to division is too far of a logical jump—it’s

30 | Chapter 4: Change

too complex. On the other hand, stepping from multiplication to division at the end
was really very simple, so that was a good choice.

Sometimes you may even need to take a single feature and break it down into many
small, simple, logical steps so that it can be implemented easily.

This is actually a combination of two methods: one called “incremental development”
and another called “incremental design.” Incremental development is a method of
building up a whole system by doing work in small pieces. In our list, each step that
started with “Implement” was part of the incremental development process. Incre-
mental design is similarly a method of creating and improving the system’s design in
small increments. Each step that started with “Fix up the system’s design” or “Plan”
was part of the incremental design process.

Incremental development and design is not the only valid method of software devel-
opment, but it is one that definitely prevents the three flaws outlined in the previous
section.

Incremental Development and Design | 31

CHAPTER 5

Defects and Design

Unfortunately, no programmer is perfect. Good programmers will introduce roughly
one defect into a program for every 100 lines of code they write. The best programmers,
under the best possible circumstances, will introduce one defect per 1,000 lines of code
they write.

In other words, no matter how good or bad you are as a programmer, it’s certain that
the more you code, the more defects you will introduce. This allows us to state a law
called the Law of Defect Probability:

The chance of introducing a defect into your program is proportional to the
size of the changes you make to it.

This is important because defects violate our purpose of helping people, and therefore
should be avoided. Also, fixing defects is a form of maintenance. Thus, increasing the
number of defects increases our effort of maintenance.

With this law, without having to predict the future, we can immediately see that making
small changes is likely to lead to lower maintenance effort than making large changes
would. Small changes = fewer defects = less maintenance.

This law is also sometimes stated more informally as “You can’t introduce new bugs if
you don’t add or modify code.”

The funny thing about this law is that it seems to be in conflict with the Law of Change
—your software has to change, but changing it will introduce defects. That is a real
conflict, and it’s balancing these laws that requires your intelligence as a software de-
signer. It is actually that conflict that explains why we need design, and in fact tells us
what the ideal design is:

The best design is the one that allows for the most change in the environment
with the least change in the software.

And that, pretty simply, sums up much of what is known about good software design
today.

33

If It Ain’t Broken...
Okay, so you can’t introduce bugs into your program if you don’t add or modify code,
and that’s a major law of software design. However, there’s also a very important related
rule that many software engineers have heard in one form or another, but sometimes
forget:

Never “fix” anything unless it’s a problem, and you have evidence showing
that the problem really exists.

It’s important to have evidence of problems before you address them. Otherwise, you
might be developing features that don’t solve anybody’s problem, or you might be
“fixing” things that aren’t broken.

If you fix problems without evidence, you’re probably going to break things. You’re
introducing change into your system, which is going to bring new defects along with
it. And not just that, but you’re wasting your time and adding complexity to your
program for no reason.

So what counts as “evidence”? Suppose five users report that when they push the red
button, your program crashes. Okay, that’s evidence enough! Alternatively, you may
push the red button yourself and notice that the program crashes.

However, just because a user reports something doesn’t mean it’s a problem. Some-
times the user will simply not have realized that your program had some feature already,
and so asked you to implement something else unnecessarily. For example, say you
write a program that sorts a list of words alphabetically, and a user asks you to add a
feature that sorts a list of letters alphabetically. Your program already does that. Ac-
tually, it already does more than that—this is often the case, with this sort of confused
request. In this case, the user may think there is a problem when there isn’t. He may
even present “evidence” that he can’t sort a list of letters, when in fact the problem is
just that he didn’t realize that he should use the word-sorting feature.

If you get a lot of requests like the above, it means that users can’t easily
find the features they need in your program. That’s something you
should fix.

Sometimes a user will report that there’s a bug, when actually it’s the program behaving
exactly as you intended it to. In this case, it’s a matter of majority rules. If a significant
number of users think that the behavior is a bug, it’s a bug. If only a tiny minority (like
one or two) think it’s a bug, it’s not a bug.

The most famous error in this area is what we call “premature optimization.” That is,
some developers seem to like to make things go fast, but they spend time optimizing
their code before they know that it’s slow! This is like a charity sending food to rich

34 | Chapter 5: Defects and Design

people and saying, “We just wanted to help people!” Illogical, isn’t it? They’re solving
a problem that doesn’t exist.

The only parts of your program where you should be concerned about speed are the
exact parts that you can show are causing a real performance problem for your users.
For the rest of the code, the primary concerns are flexibility and simplicity, not making
it go fast.

There are infinite ways of violating this rule, but the way to follow it is simple: just get
real evidence that a problem is valid before you address it.

Don’t Repeat Yourself
This is probably the most well known rule in software design. You probably already
know it. But it is valid, and so it is included here:

In any particular system, any piece of information should, ideally, exist only
once.

Let’s say you have a field called “Password” that appears on 100 screens of your pro-
gram’s user interface. What if you want to change the name of the field to “Passcode”?
Well, if you have stored the name of the field in one central location in your code, fixing
it will require a one-line code change. But if you wrote the word “Password” manually
into all 100 screens of the user interface, you’ll need to make 100 changes to fix it.

This also applies to blocks of code. You should not be copying and pasting blocks of
code. Instead, you should be using the various pieces of programming technology that
allow one piece of code to “use,” “call,” or “include” another piece of existing code.

One of the good reasons to follow this rule is the Law of Defect Probability. If we can
reuse old code, we don’t have to write or change as much code when we add new
features, so we introduce fewer defects.

It also helps us with flexibility in our designs. If we need to change how our program
works, we can change some code in just one place, instead of having to go through the
whole program and make multiple changes.

A lot of good design is based on this rule. That is, the more clever you can get with
making code “use” other code and centralizing information, the better your design is.
This is another area where your intelligence really comes to play in programming.

Don’t Repeat Yourself | 35

CHAPTER 6

Simplicity

Okay, so if we never change our software, we can entirely avoid defects. But change is
inevitable, particularly if we’re going to add new features. So “don’t change anything”
can’t be the ultimate defect reduction technique.

As explained in Chapter 5, if you want to avoid defects in your code, it does help to
keep your changes small. But if you want to go further and eliminate defects even from
your small changes, there’s another law that can help you. And it doesn’t just reduce
defects—it keeps your code maintainable, makes it easy to add new features, and im-
proves the overall understandability of your code. This is the Law of Simplicity:

The ease of maintenance of any piece of software is proportional to the sim-
plicity of its individual pieces.

That is, the simpler the pieces are, the more easily you can change things in the future.
Perfect ease of maintenance is impossible, but it’s the goal you strive for—total change
or infinite new code with no difficulty.

You may have noticed that this law doesn’t talk about the simplicity of the whole sys-
tem, though, only the individual pieces. Why?

Well, an average-sized computer program is so complex that no human being could
comprehend it all at once. It’s only possible to comprehend pieces of it. So we actually
always have some large, complex structure for our whole program. What then becomes
important is that the pieces can be understood when we look at them. The simpler the
pieces are, the more likely it is that any given person will understand them. That’s
particularly important when you’re handing your code off to other people, or when
you go away from your code for a few months and then have to come back and relearn
what you did.

37

An Architecture Analogy
Imagine that you’re building a 30-foot-tall steel structure. You could make it out of a
bunch of small girders, which are simple pieces. Or you could forge three huge, complex
pieces of steel, and put them together.

With the girders approach, it’s easy to make or buy the individual pieces. And if one
breaks, you just replace it with an identical spare part. Construction is simple, and so
is maintenance.

The three huge pieces, on the other hand, have to be carefully custom-made and worked
on extensively. Each completed piece is so large that it’s hard to find and fix all its
defects. And if, after the building is finished, you discover numerous flaws in each piece,
you can’t replace them—the building would fall over if you took any piece out. So you
have to weld on ugly patches of metal and hope that the whole thing stays up.

Software is very similar—when you write your code in simple, self-contained pieces,
fixing defects and maintaining the system are easy. When you design large, complex
chunks, each piece takes a lot of work and doesn’t get as much polish as it should. The
system becomes hard to maintain, and patches and hacks have to be added constantly
to keep it running.

So why do people sometimes write software in large, complex chunks instead of in
small, simple pieces? Well, there’s a perceived time savings with the huge pieces method
when you’re first creating the software. With a bunch of small pieces, a lot of time is
spent putting them together. You don’t see that with the huge pieces—there are a few
of them, they snap together, and that’s it.

However, the quality of the huge pieces system is much lower, and you will spend a lot
of time fixing it in the future. It will become harder and harder to maintain, while the
simple system becomes easier and easier. In the long run, it’s simplicity that’s efficient,
not complexity.

So how do we use this law, in the practical world of programming? That’s the subject
of much of the rest of this book. In general, though, the idea is to make the individual
components of your code as simple as possible, and then make sure they stay that way
over time.

One good way to do this is to use the incremental development and design method
introduced at the end of Chapter 4. Since there is a “redesign” step before each new
feature is added, you can use that time to simplify the system. Even if you’re not using
that method, though, you can take some time between adding features to simplify any
pieces that seem too complex to you or your fellow developers.

One way or another, you often have to take what you’ve created and make it simpler
—you can’t rely on your initial design always being the right one. You have to redesign
pieces of the system continuously as new situations and requirements arise.

38 | Chapter 6: Simplicity

Granted, this can be a fairly difficult task. You aren’t always given simple tools to write
your programs with—the languages are complex, the computer itself is complex, etc.
But strive for simplicity with what you have.

Simplicity and the Equation of Software Design
You may have realized this, but this law tells us the most important thing we can do
right now that will reduce the effort of maintenance in the Equation of Software Design
—make our code simpler. We don’t have to predict the future to do that; we can just
look at our code, see if it is complex, and make it less complex for ourselves right now.
This is how you get an effort of maintenance that decreases over time—you continually
work to make your code simpler.

There is a certain amount of work involved in doing this simplification, but overall it
is far easier to make changes in a simple system than in a complex system—so you
spend a little time doing the simplification now to save a lot of time later.

As you decrease the effort of maintenance for your system, you increase the desirability
of all possible changes. (Go back to Chapter 3 and take another look at the Equation
of Software Design if you want to refresh your memory about the details.) Simplifying
your code decreases the effort of maintenance, thereby increasing the desirability of
every other possible change.

Simplicity Is Relative
Okay, so we want things to be simple. However, how you define “simple” really de-
pends on your target audience. What is simple to you might not be simple to your
coworkers. Also, when you create something, it may seem relatively “simple” to you,
because you understand it inside and out. But to somebody who’s never seen it before,
it might appear very complicated.

If you want to understand the viewpoint of somebody who doesn’t know anything
about your code, find some code you’ve never read, and read it. Try to understand not
just the individual lines, but what the whole program is doing and how you would
modify it if you had to. That’s the same experience other people are having when read-
ing your code. You might notice that the level of complexity doesn’t have to get very
high before it becomes frustrating to read other people’s code.

That’s why it’s good to have sections in your code documentation like “New to This
Code?” that contain some simple explanations that will help people understand your
code. These should be written as if the reader knows nothing about the program, be-
cause if people are new to something, they probably don’t know anything about it.

Way too many software projects mess this up. You go to read the documentation writ-
ten for developers, and you’re presented with a huge mass of links and no direction.
This appears simple to the long-time developer of the project, because a page with lots

Simplicity Is Relative | 39

of links lets that developer quickly go to the part he’s looking for. But for someone new
to the project, it’s complicated. On the other hand, for the long-time developer, adding
a page with big, simple buttons and eliminating that list of links would add to the
complexity of his task, because his main goal will just be to find a very specific thing
very fast in the documentation.

The only thing worse than complex documentation is no documentation, where you’re
just expected to figure it out for yourself or “already know” how the code works. To
the developer, the way his program works is obvious, but to others it’s totally unknown.

Context is important, too. For example, in the context of program code, advanced
technologies often lead to simplicity, if used right. But imagine if such a program’s
advanced internal structure were displayed directly on a web page as the only interface
to the program—it wouldn’t be simple in that context, even to the developer!

Sometimes what seems complex in one context is simple in another. Displaying a lot
of explanatory text on a billboard by the side of the road would be overly complex—
there’s just no time for passing drivers to read all that text, so it would be stupid to put
it there. But in a manual for a computer program, including lots of explanatory text
would be a lot simpler than just giving a one-sentence description of something. That’s
why this book doesn’t have just one-line chapters; it wouldn’t really be all that simple
to just say something and then not explain it.

With all these different viewpoints and contexts to consider, does this mean that ach-
ieving simplicity is impossibly difficult? No! Not at all. There are specific target audi-
ences for everything, and the context of any individual thing you’re doing is usually
pretty limited. The problem is always solvable. It’s just important to take these con-
siderations into account when designing your software, so that when someone actually
comes to use it, it really is simple for that particular person.

The Editor War
There have been numerous arguments in the world of software development about
what the best tools for a job are. People love different text editors, different program-
ming languages, different operating systems, etc. Perhaps the most famous “war” in
software development is between the users of two particular text editors, vi and Emacs.
Users of each have sometimes claimed that their preferred editor is fundamentally su-
perior to the other.

In reality, there is rarely a fundamentally superior tool for writing software; there is
only a tool that particular people find to be simpler for the task at hand. Emacs users
find Emacs to be the simplest tool to use for writing software, and vi users find vi to be
the simplest. To some degree, this has to do with fundamental differences between
individuals in terms of how they like to work or how they think. People simply have
different preferences, and there’s no right or wrong. But to a larger degree, the perceived
simplicity of a tool has to do with familiarity—anybody who has used a particular tool
for a long time has likely become very familiar with it, which makes it much simpler
than any other tool, from that person’s viewpoint. In order for a new tool to seem

40 | Chapter 6: Simplicity

equally simple, that tool would have to be extremely simple, and programmers’ text
editors rarely are.

Non-programmers would likely consider both text editors to be complex beyond rea-
son, which is another example of how simplicity is relative.

Tools can have problems that make them unsuitable for the task at
hand or the wrong choice for software design reasons (see “Bad
Technologies” on page 52 in Chapter 7). But barring those prob-
lems, the relative simplicity of a tool is what will allow an individual
programmer to determine what is best for a given situation.

How Simple Do You Have to Be?
When you’re working on a project, questions about simplicity can arise. How simple
do we really have to be? Just how much do we have to simplify this thing? Is it simple
enough?

Well, of course, simplicity is relative. But even so, you can still achieve more or less
simplicity. From the relative viewpoint of your user, your product can be hard to use,
easy to use, or somewhere in between. Likewise, from the viewpoint of another pro-
grammer, your code can be relatively hard or easy to read.

So, how simple do you have to be?

Honestly?

If you really want to succeed?

Stupid, dumb simple.

The nice thing about that level of simplicity is that, for the most part, anything usable
by normal people is also usable by geniuses. You get a much broader range of possible
users.

But often, people really just don’t understand how stupid, dumb simple they have to
be to get to that level. Let’s look at an example. When you’re at the mall, there are maps
that tell you where everything is. On the best mall maps, there is a huge red dot, with
the words “YOU ARE HERE” in gigantic letters, right in front of you. On the poorer
maps, there is a tiny yellow triangle in the middle of the map that is very hard to find,
and off to the side there’s some text that explains, “The tiny yellow triangle means ‘You
are here!’” Add this to the general confusion of trying to find anything on these maps,
and you could be spending five or six minutes just standing in front of the thing, trying
to figure out how to get where you’re going.

To the guy that designed the map, this may seem totally reasonable. He spent lots of
time designing it, so it was clearly important enough to him that he would be happy to

How Simple Do You Have to Be? | 41

spend several minutes looking at it, learning all about it, figuring it out, etc. But to us,
the people who are actually using the map, it’s a very, very minor part of our existence.
We just want it to be as simple as possible, so that we can use it quickly and get on
with our lives!

Many programmers are particularly bad about this with their code. They assume that
other programmers will be willing spend a lot of time learning all about their code,
because after all, it took a lot of time to write it! The code is important to them, so
won’t it be important to everybody?

Now, programmers are generally an intelligent bunch. But it’s still a mistake to think,
“Oh, other programmers will understand everything I’ve done here without any sim-
plification or explanation of my code.” It’s not a matter of intelligence—it’s a matter
of knowledge. Programmers who are new to your code don’t know anything about it;
they have to learn. The easier you make it for them to learn, the faster they are going
to figure it out, and the easier it will be for them to use it.

There are lots of ways to make your code easy to learn: simple documentation, simple
design, step-by-step tutorials, etc.

But, if your code isn’t stupid, dumb simple to learn, people are going to have trouble
with it. They’re going to use it incorrectly, create bugs, and generally muck things up.
And when all this happens, who are they going to come ask about it? Yes, you! You are
going to be spending time answering all of their questions. (Mmm, sounds fun, doesn’t
it?)

None of us like being talked down to or treated like we’re idiots. And sometimes that
leads us to create things that are a little complicated, so that we feel like we aren’t talking
down to the user or to other programmers. We throw in some big words, make it a
little less than simple, and people respect our intelligence but feel kind of stupid because
they don’t get it. They might think we’re way smarter than they could ever be, and
that is kind of flattering. But really, is that helping them?

On the other hand, when you make your product or code stupidly simple, you’re al-
lowing people to understand it. That makes them feel smart, lets them do what they’re
trying to do, and doesn’t reflect badly on you at all. In fact, people will probably admire
you more if you make things simple than if you make them complex.

Now, your whole family does not have to be able to read your code. Simplicity is still
relative, and the target audience for code is other programmers. But to those other
programmers, your code should seem very simple and easy to understand. It can use
as much advanced technology as is required to achieve that simplicity, but it should
still ultimately be simple.

When the question “How simple do I have to be?” comes up, you might as well ask
yourself, “Do I want people to understand this and be happy, or do I want them to be
confused and frustrated?” If you pick the former, there’s only one level of simplicity
that will assure your success: Stupid, dumb simple.

42 | Chapter 6: Simplicity

Be Consistent
Consistency is a big part of simplicity. If you do something one way in one place, do it
that way in every place.

If you name a variable somethingLikeThis, then all of your variables should be named
that way (otherVariable, anotherNameLikeThat, etc.). If you have variables that are
named_like_this, then all variables should be all lowercase and have underscores be-
tween the words.

Code that isn’t consistent is harder for a programmer to understand and read.

We can illustrate this by looking at an example from natural language. Compare these
two sentences:

• This is a normal sentence with normal words that everybody can understand.

• tHisisanOrmalseNtencewitHnorMalwordsthAtevErybOdycAnunderStaNd.

Both of those sentences say the exact same thing, but the first one is way simpler to
read because it’s consistent with how most people write English. Sure, it is possible to
read the second sentence, but would you want to read a whole book written like that?
Right. So, would you want to read a whole program written without any consistency?

There are situations in programming where it doesn’t matter how you do things, as
long as you always do them that way. Theoretically, you could write your code in some
crazy complex way, but as long as you were consistent with it, people would learn how
to read it. (Of course, it’s better to be consistent and simple, but if you can’t be totally
simple, at least be consistent.)

Total consistency can also make programming easier in many cases. For example, if
every object in your program has a field called name, you can write one piece of simple
code that deals with the name field of every object in your entire program. But if in Object
A the name field is called a_name and in Object B it’s called name_of_mine, you’ll have
to write special code to deal with Object A and Object B differently.

Similarly, your program should behave in a consistent fashion internally. A programmer
who is familiar with how to use one part of your code should be immediately familiar
with how to use another part of your code, because both pieces behave in a similar
fashion. For example, if when using Part A the programmer has to call three functions
and then write some code, when using Part B she should also have to call a similar set
of three functions and then write some code. And if you have a function named dump
in Part A that causes Part A to print out all its internal variables, the function named
dump in Part B should do the same thing for Part B. Don’t keep forcing programmers to
relearn the way your system works every time they look at a new piece of it.

Maybe things aren’t that consistent in the real world, but you’re in charge of the world
of your program, so you can make things simple and consistent.

Be Consistent | 43

There are some examples of consistency in the real world. In much of Asia, people use
chopsticks to eat. In the Americas and Europe, people use forks. Okay, that’s two
different methods of eating, but overall it’s pretty consistent, in any given area. Now
imagine if every time you went to somebody’s house, you had to learn some whole new
way of eating. Maybe at Bob’s house they eat with scissors, and at Mary’s house they
eat with flat pieces of cardboard. Eating would get pretty complex, wouldn’t it?

It’s the same in programming—without consistency, things get very complex. With
consistency, they become simple. And even if they’re not simple, at least you can learn
the complexity just once, and then you know it forever.

Readability
As has been said many times in the world of software development, code is read more
often than it is written. So, it’s important to make code easy to read:

Readability of code depends primarily on how space is occupied by letters
and symbols.

If the whole universe were black, you wouldn’t be able to tell objects apart. They’d all
be a single black mass. Just the same, if a whole file is a mass of code without enough
consistent, logical spacing, it’s hard to separate out the pieces. Space is what keeps
things separate.

You don’t want too much space, because then it’s hard to tell how things are related.
And you don’t want too little, because then it’s hard to tell that things are separate.

There’s no hard and fast rule about exactly how code should be spaced, except that it
should be done in a consistent manner and the spacing should help inform the reader
about the code’s structure.

Example: Spaces
This code is hard to read because it has too little space in it—very little information
about the code’s structure is provided:

x=1+2;y=3+4;z=x+y;if(z>y+x){print"error";}

Here’s the same block of code with too much space in it—the space hinders the reader
from seeing the code’s structure:

x = 1+ 2;
y = 3 +4;

 z = x + y;
if (z > y+x)
 { print "error" ;
 }

That’s even harder to read than the code with no space.

Here’s the same code with reasonable spacing:

44 | Chapter 6: Simplicity

x = 1 + 2;
y = 3 + 4;
z = x + y;
if (z > y + x) {
 print "error";
}

That’s much easier to read, and it helps you realize how the programmer intended the
program to be designed. Three variables are set, and then in some condition, an error
is thrown. That’s the structure of the system, made clear to the reader by the way the
programmer used space.

Making code easy to read also helps make it easy to fix. In the previous example, when
the code is properly spaced, we can easily see that z will never be greater than y + x,
because z is always equal to y + x. Thus, the block starting with if (z > y + x) should
be deleted, as it’s unnecessary.

In general, if you have some very buggy code that is also hard to read, the first thing
you should do is make it more readable. Then you can see more clearly where the bugs
are.

Naming Things
An important part of readability is giving good names to variables, functions, classes,
etc. Ideally:

Names should be long enough to fully communicate what something is or
does without being so long that they become hard to read.

It’s also important to think about how the function, variable, etc. is going to be used.
Once we start putting its name into lines of code, will it make those lines of code so
long that they’re hard to read? For example, if you have a function that is only called
once, on one line all by itself (with no other code in that line), it can have a fairly long
name. However, a function that you’re going to use frequently in complex expressions
should probably have a name that is short (though still long enough to fully commu-
nicate what it does).

Readability | 45

Example: Names
Here’s some code with really poor names:

q = s(j, f, m);
p(q);

Those names don’t communicate what the variables are or what the functions do.
Here’s the same code with good names:

quarterly_total = sum(january, february, march);
print(quarterly_total);

And here’s the same code again, with names that are so long that they’re hard to read:

quarterly_total_for_company_in_2011_as_of_today =
add_all_of_these_together_and_return_the_result(january_total_amount,
february_total_amount, march_total_amount);
send_to_screen_and_dont_wait_for_user_to_respond(quarterly_total_for_company_in_2011_as_
of_today);

Those names take up too much space, which makes them difficult to read. Thus, in a
way naming things also comes back to how letters and symbols occupy space.

Comments
Having good comments in code is a big part of making it readable. However, you
generally should not add comments that say what a piece of code is doing. That should
be obvious from reading the code. If it isn’t obvious, the code should be made simpler.
Only if you can’t make code simpler should you have a comment explaining what it
does.

The real purpose of comments is to explain why you did something, when the reason
isn’t obvious. If you don’t explain that, other programmers may be confused, and when
they go to change your code they might remove important parts of it if those parts don’t
seem to have a reason to exist.

Some people believe that readability is the be-all and end-all of code simplicity—that
if your code is easy to read, you’ve done all you need to do as a designer. That’s not
true—you can have very readable code and still have a system that is too complex.
However, making your code readable is very important, and it’s usually the first step
that should be taken on the road to good software design.

Simplicity Requires Design
Unfortunately, people do not naturally build simple systems. Without attention paid
to design, a system will evolve into a massive, complicated beast.

If your project lacks a good design, and it continues to grow, you will eventually end
up over your head in complexity. This is hard for certain people to imagine—some

46 | Chapter 6: Simplicity

can’t imagine that there is a future beyond lunch, and others just haven’t had enough
experience to understand how complex things can get. And there can be a corporate
culture that says, “Oh, we just hack in new features; we should do things the right way,
but we can’t because blah blah blah.” But one day, your project will fail. And no matter
how many reasons you can give for that failure, it won’t change the fact that your project
failed.

On the other side of things, when you’ve designed well, there’s often not a whole lot
of credit that comes your way. Catastrophic failures in design are big and noticeable,
whereas small increments of work toward a good design are invisible to people who
aren’t intimately connected with the code. This can make being a designer a difficult
job. Handling a big failure gets you a lot of thanks, but preventing one from ever hap-
pening...well, nobody’s likely to notice.

So, let’s congratulate you here. Did you think a bit about design? Great! Your users and
fellow developers will see the benefits—working software, on-time releases, and a clear,
understandable codebase. You will feel confident in your own work and go home feel-
ing accomplished. Will the other developers know how much work it took to make
things run so smoothly? Maybe not. But that’s okay. There are other rewards in the
world besides the congratulations of your peers.

Once in a rare while, though, you will get some appreciation for all of your work. Don’t
despair—somebody will notice eventually. And until then, enjoy all of the other positive
results of effective, correct design.

When you start applying the design principles in this book to your
project, it may take some of your junior programmers or colleagues a
long time to understand why they should also design well. Having them
read this book will help. If they can’t or won’t read it, keep guiding them
(or forcing them, at the worst) toward good design decisions, and they
will see after a couple of years (at the outside) how well good design
decisions pay off.

Simplicity Requires Design | 47

CHAPTER 7

Complexity

When you work as a professional programmer, chances are you’ll know somebody (or
you are somebody!) who’s going through this common development horror story: “We
started working on this project five years ago, and the technology we were using/making
was modern then, but it’s obsolete now. Things keep getting more and more complex
with this obsolete technology, so it keeps getting less and less likely that we’ll ever finish
the project. But if we rewrite, we could be here for another five years!”

Another popular one is: “We can’t develop fast enough to keep up with modern user
needs.” Or, “While we were developing, Company X wrote a product better than ours
much more quickly than we did.”

We know now that the source of these problems is complexity. You start out with a
simple project that can be completed in one month. Then you add complexity, and the
task will take three months. Then you take each piece of that and make it more complex,
and the task will take nine months.

Complexity builds on complexity—it’s not just a linear thing. That is, you can’t make
assumptions like: “We have 10 features, so adding 1 more will only add 10 percent
more time.” In fact, that one new feature will have to be coordinated with all 10 of your
existing features. So, if it takes 10 hours of coding time to implement the feature itself,
it may well take another 10 hours of coding time to make the 10 existing features all
interact properly with the new feature. The more features there are, the higher the cost
of adding a feature gets. You can minimize this problem by having an excellent software
design, but there will still always be some slight extra cost for every new feature.

Some projects start out with such a complex set of requirements that they never get a
first version out. If you’re in this situation, you should just trim features. Don’t shoot
for the moon in your first release—get out something that works and make it work
better over time.

49

There are other ways to add complexity than just adding features, too. The most com-
mon other ways are:

Expanding the purpose of the software
Generally, just don’t ever do this. Your marketing department might be drooling
over the idea of making a single piece of software that does your taxes and cooks
dinner, but you should be screaming as loud as you can whenever any suggestion
like that comes near your desk. Stick to the existing purpose of your software—it
just has to do what it does well, and you will succeed (as long as your software
helps people with something they actually need and want help with).

Adding programmers
Yes, that’s right—adding more people to the team does not make things simpler;
instead, it adds complexity. There’s a famous book called The Mythical Man
Month by Fred Brooks, that points this out. If you have 10 programmers, adding
an eleventh means spending time to groove in that one programmer, plus time to
groove in the existing 10 programmers to the new person, plus the time spent by
the new person interacting with the existing 10 programmers, and so on and so
on. You are more likely to be successful with a small group of expert programmers
than a large group of inexpert programmers.

Changing things that don’t need to be changed
Any time you change something, you’re adding complexity. Whether it’s a re-
quirement, a design, or just a piece of code, you’re introducing the possibility of
bugs, as well as the time required to decide upon the change, the time required to
implement the change, the time required to validate that the new change works
with all the other pieces of the software, the time required to track the change, and
the time required to test the change. Each change builds on the last in terms of all
this complexity, so the more you change, the more time each new change is going
to take. It’s still important to make certain changes, but you should be making
informed decisions about them, not just making changes on a whim.

Being locked into bad technologies
Basically, this is where you decide to use some technology, and then are stuck with
it for a long time because you’re so dependent on it. A technology in this sense is
“bad” if it locks you in (doesn’t allow you to switch easily to some other technology
in the future), isn’t going to be flexible enough for your future needs, or just doesn’t
have the level of quality you need in order to design simple software with it.

Misunderstanding
Programmers who don’t fully understand their work tend to develop complex sys-
tems. It can become a vicious cycle: misunderstanding leads to complexity, which
leads to further misunderstanding, and so on. One of the best ways to improve
your design skills is to be sure that you fully understand the systems and tools you
are working with. The better you understand these, and the more you know about
software in general, the simpler your designs can be.

50 | Chapter 7: Complexity

Poor design or no design
Basically, this just means “a failure to plan for change.” Things are going to change,
and design work is required to maintain simplicity while the project grows. You
have to design well at the start and keep on designing well as the system expands
—otherwise, you can introduce massive complexity very fast, because with a poor
design, each new feature multiplies the complexity of the code instead of just
adding a little bit to it.

Reinventing the wheel
If, for example, you invent your own protocol when a perfectly good one exists,
you’re going to be spending a lot of time working on the protocol, when you could
just be working on your software. You should almost never have any huge invented-
in-house dependency, like a web server, a protocol, or a major library, unless that
is your product. The only times it’s okay to reinvent the wheel are when any of the
following are true:

a. You need something that doesn’t exist yet.

b. All of the existing “wheels” are bad technologies that will lock you in.

c. The existing “wheels” are fundamentally incapable of handling your needs.

d. The existing “wheels” aren’t being properly maintained and you can’t take
over maintenance of them (because, for example, you don’t have the source
code).

All of these factors are slowly and gradually harmful to your project, not immediately
destructive. Most of them only do long-term damage—something you won’t see for a
year or more—so when somebody proposes them, often they sound harmless. And
even when you start implementing them, they may seem fine. But as time goes on—
and particularly as more and more of these stack up—the complexity becomes more
apparent and grows and grows and grows, until you’re another victim of that ever-so-
common horror story, The Never-Shipping Product.

Complexity and Purpose
The basic purpose of any given system that you’re working on should be pretty simple.
That helps keep the system as a whole as simple as it can realistically be. But if you start
to add features that fulfill some other purpose, things get very complex very quickly.
For example, the basic purpose of a word processor is to help you write things. If we
suddenly made it also able to read your email, it would get ridiculously complicated.
Can you imagine what the user interface would look like? Where would you put all the
buttons? We would say that this is a violation of your word processor’s purpose. You
didn’t even expand its purpose; you just added features that have nothing to do with it.

It’s also important to think about the user’s purpose. Your user will be trying to do
something. Ideally, the purpose of a program should be very close (in the exact words

Complexity and Purpose | 51

you’d use to describe it) to the user’s purpose. For example, let’s say the user’s purpose
is to do her taxes. She wants software whose purpose is to help people do their taxes.

If your purpose and the user’s purpose don’t match up, you’re probably making her
life difficult. For example, if she wants to read her email, but the primary purpose of
the program she’s using is to show ads to users, those purposes are not matched up.

Want to see your user get angry really fast? Make it difficult for her to accomplish her
purpose. Pop up windows in her face when she’s trying to do something. Add so many
features to your program that she can’t find the right one. Use lots of strange icons that
she doesn’t understand. There are lots of ways to do it, but they all boil down to in-
terfering with the user’s purpose or violating the basic purpose of the program itself.

Sometimes, marketers or managers have goals for a program that are not really aligned
with the basic purpose of the program, like “be cute,” “have an edgy design,” “become
popular with the news media,” “use the latest technologies,” and so on. These people
may be important to your organization, but they are not the people who should be
deciding what your program does! As a software designer or technical manager, it’s
your job to see that the program stays on track and never violates its basic purpose.
Nobody else is going to hold that responsibility. Sometimes you might really have to
fight for it, but it’s well worth it in the long run.

And it’s not as if you’d come to a marketing failure with that philosophy. There are
many, many products that have been extremely successful by sticking to just one pur-
pose. Soap’s purpose is just to clean things. Salt just makes things salty. A light bulb
just lights things up. But all of these are products that have supported enormous cor-
porations for decades. You don’t have to have a complicated product to have effective
marketing—you just have to have knowledge and skill in marketing, which is a com-
pletely separate field from software design.

Really, there’s no need to get fancy and complex and try to do 500 things at once in a
single program. Users are happiest with a focused, simple product that never violates
its basic purpose.

Bad Technologies
Another common source of complexity is picking the wrong technology to use in your
system—particularly one that ends up not holding up well to future requirements.
However, it can be tricky to know, without being able to predict the future, what tech-
nology you should choose now. Thankfully, there are three factors you can look at to
determine if a technology is “bad” before you even start using it: survival potential,
interoperability, and attention to quality.

52 | Chapter 7: Complexity

Survival Potential
A technology’s survival potential is the likelihood that it will continue to be maintained.
If you get stuck with a library or some dependency that becomes obsolete and un-
maintained, you’re really in for some trouble.

You can get some idea of the survival potential of a piece of software by looking at its
recent release history. Have the developers been frequently coming out with new ver-
sions that solve real user problems? Also, how responsive are the developers to bug
reports? Do they have a mailing list or a support team that’s very active? Are there lots
of people online talking about this technology? If a technology has a lot of momentum
now, you can be fairly sure that it’s not going to die any time soon.

Also look at whether just one vendor is pushing the technology, or if it’s broadly ac-
cepted and used across many areas of software by many different developers. If there
is only one vendor who pushes and forwards the system, there’s a risk that that vendor
will either go out of business or just decide to stop maintaining the system.

Popularity
It may sound like we’re saying you should just pick the most popular technology that
suits your needs. To some degree, this is true—popular technologies have a lot of sur-
vival potential. However, you have to look at the difference between tools that are
validly popular, and tools that are popular only because they hold some sort of
monopoly.

At the time of this book’s writing, C is one example of a validly popular language. Many
people use it at many different organizations for many different purposes. It’s the sub-
ject of several international standards, and there are numerous implementations of
those standards, including many different widely used compilers.

Some technologies are popular only because you must use them, though.1 Suppose
Company X designs its own programming language. Then it designs a popular device
that accepts only programs written in that language. This is the “one vendor” case
mentioned in the text—the language may seem popular, but it actually has poor survival
potential unless it gets picked up broadly across the software industry.

Interoperability
Interoperability is a measure of how easy it is to switch away from a technology if you
have to. To get an idea of the interoperability of a technology, ask yourself, “Can we
interact with this technology in some standard way, so it would be easy to switch to
another system that follows the same standard?”

1. Developers can be very passionate about technologies they work with. To avoid offending users of
certain technologies, no specific technology is mentioned here.

Bad Technologies | 53

For example, there are international standards for how a program should interact with
a database system. Some database systems support these standards very well. If you
pick one of these good database systems, you can switch to another database system
in the future with only minor changes to your program.

However, some other database systems aren’t very good at supporting standards. If you
want to switch between database systems that don’t support standards, you’ll have to
rewrite your program. So, when you choose one of these nonstandard systems, you are
locked into it and will be unable to easily switch to a different system.

Attention to Quality
This one is more of a subjective measurement, but the idea is to see if the product has
been getting better in its recent releases. If you can see the source code, check if the
developers are refactoring and cleaning up the codebase. Is it becoming easier to use
or more complex? Do the people who maintain the technology actually care about the
quality of their product? Have there recently been a lot of serious security vulnerabilities
in the software that seem like they were the result of poor programming?

Other Reasons
There are other aspects to consider when you’re choosing a technology—primarily its
simplicity and how suitable it is for your purposes. Personal opinion can play a part,
too, after you’ve taken into account all the practical considerations. Some people like
the way one programming language looks better than the way another one does. That
can sometimes be a valid reason to choose a technology—if you just like one technology
more than another, and everything else is equal between them, go with the one that
makes you happy. After all, you’re the one who’s going to be using it—your opinion
matters! The guidelines above will help you weed out the definitely bad choices; the
rest is up to your personal research, requirements, and desires.

Complexity and the Wrong Solution
Often, if something is getting very complex, that means there is an error in the design
somewhere far below the level where the complexity appears.

For example, it’s very difficult to make a car drive fast if it has square wheels. Tuning
the engine isn’t going to solve the problem—you need to redesign the car so that its
wheels are round.

Any time there’s an “unsolvable complexity” in your program, it’s because there’s
something fundamentally wrong with the design. If the problem appears unsolvable at
one level, back up and look at what might be underlying the problem.

54 | Chapter 7: Complexity

Programmers actually do this quite often. You may find yourself saying, “I have this
terribly messy code, and it’s really complex to add a new feature!” Well, your funda-
mental problem there is that the code is messy. Clean it up, make the already existing
code simple, and you’ll find that adding the new feature will be simple as well.

What Problem Are You Trying to Solve?
If somebody comes up to you and says something like, “How do I make this pony fly
to the moon?” the question you need to ask is, “What problem are you trying to solve?”
You may find out that what this person really needs is to collect some gray rocks. Why
he thought he had to fly to the moon, and use a pony to do it, only he may know. People
do get confused like this. Ask them what problem they’re trying to solve, though, and
a simple solution will start to present itself. For example, in this case, once we under-
stand the problem fully, the solution becomes simple and obvious: he should just walk
outside and find some gray rocks—no pony required.

So, when things get complex, back up and take a look at the problem you’re trying to
solve. Take a really big step back. You are allowed to question everything. Maybe you
thought that adding two and two was the only way to get four, and you didn’t think
about adding one and three instead, or skipping the addition entirely and just putting
four there. The problem is, “How do I get the number four?” Any method of solving
that problem is acceptable, so what you need to do is figure out what the best method
would be for the situation that you’re in.

Discard your assumptions. Really look at the problem you’re trying to solve. Make sure
that you fully understand every aspect of it, and then figure out the simplest way to
solve it. Don’t ask, “How do I solve this problem using my current code?” or “How did
Professor Anne solve this problem in her program?” No—just ask yourself, “How, in
general, in a perfect world, should this sort of problem be solved?” From there, you
might see how your code needs to be reworked. Then you can rework your code.
Then you can solve the problem.

Complex Problems
Sometimes you will be called upon to solve a problem that is inherently very complex
—for example, spell checking, or making a computer play chess. This doesn’t mean
that your solution has to be complex, but it does mean that you will have to work harder
than usual to simplify your code when dealing with this problem.

If you’re having trouble with a complex problem, write it down on paper in plain lan-
guage, or draw it out as a diagram. Some of the best programming is done on paper,
really. Putting it into the computer is just a minor detail.

Many difficult design problems can be solved by simply drawing or writing
them out on paper.

Complex Problems | 55

Handling Complexity
As a programmer, you will run into complexity. Other programmers will write complex
programs that you will have to fix. Hardware designers and language designers will
make your life difficult.

If some part of your system is too complex, there is a specific way to fix it—redesign
the individual pieces, in small steps. Each fix should be as small as you can safely make
it without introducing further complexity. When you’re going through this process,
the greatest danger is that you could possibly introduce more complexity with your
fixes. This is why so many redesigns or rewrites ultimately fail—they introduce more
complexity than they fix, or they end up being just as complex as the original system
was.

Each step could be as small as giving a single variable a better name, or just adding a
few comments to confusing code. But more often, the steps involve splitting one com-
plex piece into multiple simple pieces.

For example, if you have one long file that contains all of your code, start improving it
by splitting off one tiny piece into a separate file. Then improve the design of that tiny
piece. Then split off some other tiny piece of the system into a new file, and improve
its design. Continue like this, and eventually you’ll end up with a reliable, understand-
able, and maintainable system.

If your system is very complex, this can take quite a bit of work, so you must be patient.
You must first conceive of a system that is simpler than the one you have now—even
if just in a small way. Then you work toward that simpler system, step by step. Once
you reach that simpler system, you again conceive an even simpler system, and work
toward that. You don’t ever have to conceive the “perfect” system, because there is no
such thing. You just have to continuously work toward a system that is better than the
one you have now, and eventually you will reach a highly manageable level of simplicity.

It is important to note, however, that you cannot stop writing features and spend a long
time just redesigning. The Law of Change tells us that the environment around your
program will be continuously changing, and thus your program’s functionality must
adapt. If you fail to adapt and improve from the user’s perspective for any significant
length of time, you risk the loss of your user base and the death of your project.

There are, thankfully, various ways to balance these two needs of writing features and
handling complexity. One of the best ways is to do your redesigning purely with the
goal of making some specific feature easier to implement, and then implementing that
feature. That way, you switch regularly between redesign work and feature work. This
also helps your new design fit your needs well, because you’re creating it with a real
use in mind. Your system will slowly get less complex over time, and you will still keep
pace with your users’ needs. You can even do this for bugs—if you see that some bug
would be easier to fix with a different design, redesign the code before fixing it.

56 | Chapter 7: Complexity

Redesigning for a Feature
A project named Bugzilla stores all of its data in a database. Bugzilla only supports one
particular database system for storing data, named OldDB. Some new customers want
to use a different database system to store data, named NewDB. These customers have
good reasons to want this feature: they understand NewDB much better than OldDB,
and they already have NewDB running at their companies. But all the existing cus-
tomers want to keep using OldDB.

So, Bugzilla has to start supporting more than one database. This will require a lot of
code changes, as Bugzilla doesn’t have any centralized code for storing and receiving
information from the database. Instead, there are lots of custom database commands
spread throughout the code that are specific to OldDB and won’t work on NewDB.

One option is to sprinkle if statements throughout the entire codebase, writing dif-
ferent code for NewDB and OldDB everywhere that the database gets accessed. This
would roughly double the complexity of the entire codebase, though, and the Bugzilla
team consists of only a few part-time programmers. If the system’s complexity doubled,
they could no longer maintain it.

Instead, the Bugzilla team decides to redesign the system so that it can support multiple
databases easily. This is a huge project. Here is a high-level overview of how they
accomplish it:

1. There exist some standard database commands that work on any database system,
but they aren’t always being used. Go through the system and fix one file at a time,
changing it to use standard commands where possible.

2. For the database commands where there is no standard version, create functions
that will return the right command for the database in use. One function is created
for one nonstandard command, and then every instance of that nonstandard com-
mand is replaced with the function call. Continue this process until all nonstandard
functions are gone.

3. Numerous pieces of code are designed entirely around features that exist only in
OldDB. Stop using those OldDB-specific features, and instead use standard fea-
tures that will work on all database systems. Fix these features one at a time, in
multiple steps if necessary.

4. Redesign Bugzilla’s installation system so that it can set itself up on any database
system, not just OldDB. This involves first redesigning the installation system to
be simpler, and then adjusting that simple code to support both OldDB and
NewDB.

Each step above is a project in and of itself. They are all broken down into smaller steps,
so that good design can be done on each piece of work. Also, the system is tested after
any change is made, to be sure that it still works the same way on OldDB as it did before.

Does this result in a perfect system? No. But it does result in a system that is better than
it was before—in addition to supporting NewDB, the code is now much easier to

Handling Complexity | 57

maintain. Eventually Bugzilla expanded to support four different database systems, all
because this work made it so much easier to support new ones.2

Making One Piece Simpler
The above is all well and good, but what do you actually do to make one piece simpler?
Well, this is where all of the world’s existing knowledge about software design comes
into play. It helps a lot to study up on design patterns, methods of dealing with legacy
code, and all the tools of software engineering in general. It can be particularly helpful
to know multiple programming languages and be familiar with many different libraries,
because each involves different ways of thinking about problems that could be appli-
cable to your situation, even if you’re not using those languages or libraries.

Studying those materials will give you many options to choose from when you are faced
with a complexity. The laws of software design can help you pick which options are
good, and then your judgment and experience can determine what to actually do with
your specific problem. Never robotically apply a tool purely because some authority
has deemed it best—always do what is right for the code you’re looking at and the
situation you’re in.

Sometimes, though, you may look at a piece of code and not know any tools to use to
simplify it. Or you may be new to programming and not have the time to study up on
all this information immediately. In that case, you should just look at the complexity
and ask yourself, “How could this be easier to deal with or more understandable?”
That’s the key question behind every simplification. Any true answer to it is a valid way
of making your code simpler; the tools and techniques of software design just help us
come up with better answers.

Unfixable Complexity
When you are working on simplifying your system, you may find that some complexity
is hard to avoid, like the complexity of the underlying hardware. If you run into an
unfixable complexity like this, your goal is to hide the complexity. Put a wrapper around
it that is simple for other programmers to use and understand.

2. Bugzilla was redesigned in this fashion many times, over many years, for many different reasons. If
you’d like to see a history of the major work that was done, you can look at the crossed-out items
here: https://bugzilla.mozilla.org/showdependencytree.cgi?id=278579&hide_resolved=0. If you’d just
like more specifics about how the database work was done, see the crossed-out items here: https://
bugzilla.mozilla.org/showdependencytree.cgi?id=98304&hide_resolved=0. Reading the title of each
item should give you an idea of how the project was accomplished, if you’re familiar with database
systems.

58 | Chapter 7: Complexity

Rewriting
Some designers, when faced with a very complex system, throw it out and start over
again. However, rewriting a system from the ground up is essentially an admission of
failure as a designer. It is making the statement, “We failed to design a maintainable
system and so must start over.”

Some people believe that all systems must eventually be rewritten. This is not true. It
is possible to design a system that never needs to be thrown away. A software designer
saying “We’ll have to throw the whole thing away someday anyway” would be much
like a building architect saying “This skyscraper will fall down someday anyway.” If
the skyscraper were poorly designed and not maintained well, then yes, someday it
would fall down. But if it were built right to start with and then properly maintained,
why would it collapse?

It is just as possible to build maintainable software systems as it is to build sound
skyscrapers.

Now, with all that said, there are situations in which rewriting is acceptable. However,
they are very rare. You should only rewrite if all of the following are true:

1. You have developed an accurate estimate that shows that rewriting the system will
be a more efficient use of time than redesigning the existing system. Don’t just
guess—do actual experiments with redesigning the existing system to see how it
goes. It can be very hard to confront the existing complexity and resolve some piece
of it, but you must actually attempt this a few times before you can know how
much effort fixing all of it will require.

2. You have a tremendous amount of time to spend on creating a new system.

3. You are somehow a better designer than the original designer of the system or, if
you are the original designer, your design skills have improved drastically since
you designed the original system.

4. You fully intend to design this new system in a series of simple steps and have users
who can give you feedback for each step along the way.

5. You have the resources available to both maintain the existing system and design
a new system at the same time. Never stop maintaining a system that is currently
in use so that the programmers can rewrite it. Systems must always be maintained
if they are in use. And remember that your personal attention is also a resource”that
must be taken into account here—do you have enough time available in each day
to be a designer on both the new system and the old system simultaneously, if you
are going to work on both?

If all of the above points are true, you may be in a situation where it is acceptable to
rewrite. Otherwise, the correct thing to do is to handle the complexity of the existing
system without a rewrite, by improving the system’s design in a series of simple steps.

Rewriting | 59

CHAPTER 8

Testing

There is no certainty that a program will run in the future—there is only the certainty
that a program is running now. Even if you’ve run it once, it may not run again. Perhaps
the environment will change around it so it will no longer function. Perhaps you’ll run
it on a different computer, and it won’t work on the new machine.

However, there is hope—we are not doomed to endless uncertainty about the func-
tionality of our software. The Law of Testing tells us the way out:

The degree to which you know how your software behaves is the degree to
which you have accurately tested it.1

The more recently you’ve tested your software, the more likely it is that it still works.
The more environments you’ve tested it in, the more certain you can be that it works
in those circumstances. This is part of what we mean when we talk about the “degree”
of testing—how many aspects of the software you’ve tested, how recently, and in how
many different environments. In general, you could simply say:

Unless you’ve tried it, you don’t know that it works.

Saying “it works” is actually quite vague, though—what do you mean by “works”?
What you really know when you test is that your software behaves as you intended it
to. Thus, you have to know what behavior you intended. That may sound stupid and
obvious, but it’s a critical fact in testing. You must ask a very precise question with
every test, and get a very specific answer. The question could be something like, “What
happens when a user presses this button as the first thing he does after the application
starts, when the application has never been started before?” And you should be looking
for some specific answer, such as, “The application displays a window that says ‘Hello,
World!’”

So, you have a question, and you know what the answer should be. If you get some
other answer, then your software is “not working.”

1. This law is considerably newer than the others and I would welcome any verification or counter-examples
that you have for it.

61

Sometimes a behavior is very hard to test, and you can only ask, “If a user does this,
does the program crash?” and expect the answer, “No.” But with well-designed
software, in most situations, you can get much more specific information than that
with your tests.

And of course, you must also make your tests accurate. If they tell you that the program
is behaving properly when it is not—or tell you that it’s broken when it’s actually
working fine—they are inaccurate tests.

Finally, you must observe the results of your tests in order for them to be valid. If they
fail, there must be some way for you to know that they failed, and specifically how they
failed.

Testing can be easy to overlook. We write some code, save it, and forget to ever see if
it actually works. But no matter how brilliant a programmer you are, no matter how
many mathematical proofs you do to show that your code is correct, you don’t know
that it works unless you’ve actually tried to use it.

And if at any point you change a piece of your software, you no longer know that that
piece works. It must be tested again. Furthermore, that piece is likely connected to lots
of other pieces, so you now don’t know if any of those pieces work, either. If your change
is big enough, you may have to test the whole program again.

Obviously, you don’t want to have to manually test your whole program every time
you make a tiny change. So, in modern times, developers usually apply this law by
creating automated tests for every piece of code that they write. The nice thing about
that is that they can just run the tests right after they make any change, and those
automated tests will test every single piece of the system to make sure everything still
works after each individual change.

There is a lot of information on the Internet and in books about writing automated
tests and about testing in general—it’s a very well covered area, and it’s worth reading
up on. The Law of Testing just explains why we should test, when we should test, and
what information tests are actually giving us.

62 | Chapter 8: Testing

APPENDIX A

The Laws of Software Design

This appendix summarizes all of the actual laws discussed in this book:

1. The purpose of software is to help people.

2. The Equation of Software Design:

where:

D
Stands for the desirability of the change.

Vn
Stands for value now.

Vf
Stands for future value.

Ei
Stands for the effort of implementation.

Em
Stands for the effort of maintenance.

This is the primary law of software design. As time goes on, this equation reduces
to:

Which demonstrates that it is more important to reduce the effort of maintenance
than it is to reduce the effort of implementation.

3. The Law of Change: The longer your program exists, the more probable it is that
any piece of it will have to change.

63

4. The Law of Defect Probability: The chance of introducing a defect into your pro-
gram is proportional to the size of the changes you make to it.

5. The Law of Simplicity: The ease of maintenance of any piece of software is pro-
portional to the simplicity of its individual pieces.

6. The Law of Testing: The degree to which you know how your software behaves is
the degree to which you have accurately tested it.

That’s it. Many more facts and ideas were discussed in this book, but these six items
are the laws of software design. Note that of all of these, the most important to bear in
mind are the purpose of software, the reduced form of the Equation of Software Design,
and the Law of Simplicity.

If you wanted to sum up the most important facts to keep in mind about software design
in two simple sentences, they would be:

• It is more important to reduce the effort of maintenance than it is to reduce the
effort of implementation.

• The effort of maintenance is proportional to the complexity of the system.

Armed with only those two statements and an understanding of the purpose of soft-
ware, you could very possibly re-evolve everything in this book, provided that you also
understood that the complexity of the system actually comes from the complexity of
its individual pieces.

64 | Appendix A: The Laws of Software Design

APPENDIX B

Facts, Laws, Rules, and Definitions

This appendix lists every single major fact, law, rule, and definition covered in this
book:

• Fact: The difference between a bad programmer and a good programmer is un-
derstanding. That is, bad programmers don’t understand what they are doing, and
good programmers do.

• Rule: A good programmer should do everything in his power to make what he
writes simple for other programmers to use and comprehend.

• Fact: Everybody who writes software is a designer.

• Rule: Design is not a democracy. Decisions should be made by individuals.

• Law: The purpose of software is to help people.

• Law: The Equation of Software Design:

This is the Primary Law of Software Design. Or, in English:

The desirability of a change is directly proportional to the value now plus the future
value, and inversely proportional to the effort of implementation plus the effort of
maintenance.

As time goes on, this equation reduces to:

Which demonstrates that it is more important to reduce the effort of maintenance
than it is to reduce the effort of implementation.

65

• Rule: The quality level of your design should be proportional to the length of future
time in which your system will continue to help people.

• Rule: There are some things about the future that you do not know.

• Fact: The most common and disastrous error that programmers make is predicting
something about the future when in fact they cannot know.

• Rule: You are safest if you don’t attempt to predict the future at all, and instead
make all your design decisions based on immediately known present-time
information.

• Law: The Law of Change: The longer your program exists, the more probable it is
that any piece of it will have to change.

• Fact: The three mistakes (called “the three flaws” in this book) that software de-
signers are prone to making in coping with the Law of Change are:

1. Writing code that isn’t needed

2. Not making the code easy to change

3. Being too generic

• Rule: Don’t write code until you actually need it, and remove any code that isn’t
being used.

• Rule: Code should be designed based on what you know now, not on what you
think will happen in the future.

• Fact: When your design actually makes things more complex instead of simplifying
things, you’re overengineering.

• Rule: Be only as generic as you know you need to be right now.

• Rule: You can avoid the three flaws by doing incremental development and design.

• Law: The Law of Defect Probability: The chance of introducing a defect into your
program is proportional to the size of the changes you make to it.

• Rule: The best design is the one that allows for the most change in the environment
with the least change in the software.

• Rule: Never “fix” anything unless it’s a problem, and you have evidence showing
that the problem really exists.

• Rule: In any particular system, any piece of information should, ideally, exist only
once.

• Law: The Law of Simplicity: The ease of maintenance of any piece of software is
proportional to the simplicity of its individual pieces.

• Fact: Simplicity is relative.

• Rule: If you really want to succeed, it is best to be stupid, dumb simple.

• Rule: Be consistent.

• Rule: Readability of code depends primarily on how space is occupied by letters
and symbols.

66 | Appendix B: Facts, Laws, Rules, and Definitions

• Rule: Names should be long enough to fully communicate what something is or
does without being so long that they become hard to read.

• Rule: Comments should explain why the code is doing something, not what it is
doing.

• Rule: Simplicity requires design.

• Rule: You can create complexity by:

— Expanding the purpose of your software

— Adding programmers to the team

— Changing things that don’t need to be changed

— Being locked into bad technologies

— Misunderstanding

— Poor design or no design

— Reinventing the wheel

— Violating the purpose of your software

• Rule: You can determine whether or not a technology is “bad” by looking at its
survival potential, interoperability, and attention to quality.

• Rule: Often, if something is getting very complex, that means there is an error in
the design somewhere below the level where the complexity appears.

• Rule: When presented with complexity, ask, “What problem are you trying to
solve?”

• Rule: Many difficult design problems can be solved by simply drawing or writing
them out on paper.

• Rule: To handle complexity in your system, redesign the individual pieces in small
steps.

• Fact: The key question behind all valid simplifications is, “How could this be easier
to deal with or more understandable?”

• Rule: If you run into an unfixable complexity outside of your program, put a wrap-
per around it that is simple for other programmers.

• Rule: Rewriting is acceptable only in a very limited set of situations.

• Law: The Law of Testing: The degree to which you know how your software be-
haves is the degree to which you have accurately tested it.

• Rule: Unless you’ve tried it, you don’t know that it works.

Facts, Laws, Rules, and Definitions | 67

About the Author
Max Kanat-Alexander, Chief Architect of the open-source Bugzilla Project, Google
Software Engineer, and writer, has been fixing computers since he was eight years old
and writing software since he was fourteen. He is the author of http://www.codesim-
plicity.com/ and http://www.fedorafaq.org, and is currently living in Northern
California.

